Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_c8b2650735a985e7388465bcd29ea834 8-Hydroxyquinoline citrate [M+H-H2O]+ 128.0495 128.26 C1=CC2=C(C(=C1)O)N=CC=C2 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_299d3c52127bd7fb2148575ae9af0a4e 1,10-Phenanthroline hydrochloride hydrate [M+H]+ 181.076 132.32 C1=CC2=C(C3=C(C=CC=N3)C=C2)N=C1 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_e7af338f02b4bcd06b75e662d4b146e7 1,10-Phenanthroline hydrochloride hydrate [M+Na]+ 203.058 142.37 C1=CC2=C(C3=C(C=CC=N3)C=C2)N=C1 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c97a86b4b6d7e7b102a0b10d65b67c75 Decamethylcyclopentasiloxane [M+Na]+ 393.0832 187.74 C[Si]1(O[Si](O[Si](O[Si](O[Si](O1)(C)C)(C)C)(C)C)(C)C)C Organometallic compounds 1 29 TW polyala
CCSBASE_0b2e5d161071d9dabbfb0e447c340f72 7-Ethyl-2-methyl-4-undecanolsulfate, sodium salt [M-H]- 293.1792 177.73 CCCCC(CC)CCC(CC(C)C)OS(=O)(=O)[O-] Organic acids and derivatives -1 29 TW polyala
CCSBASE_9839421acbb8616714223a3a4e0fa385 4-Isopropylbenzyl alcohol [M-H]- 149.0972 140.2 CC(C)C1=CC=C(C=C1)CO Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_33d0b4852acebd4d2bf6657f6c827133 Sodium 4-methylbenzenesulfonate [M-H]- 171.0121 137.78 CC1=CC=C(C=C1)S(=O)(=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_d261cd90e2e338fbef6363bdab795093 5-(5-Nitro-2-furyl)-1,3,4-oxadiazole-2-ol [M-H]- 196.0 137.02 C1=C(OC(=C1)[N+](=O)[O-])C2=NNC(=O)O2 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_a5a39efc9321be01c51db34bb6c00b38 Methyl dihydrojasmonate [M+FA-H]- 271.1551 163.9 CCCCCC1C(CCC1=O)CC(=O)OC Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_a005f6a210de3c5bf23c63358e53830b Methyl dihydrojasmonate [M+Na]+ 249.1461 156.57 CCCCCC1C(CCC1=O)CC(=O)OC Lipids and lipid-like molecules 1 29 TW polyala
1 2 ... 2232 2233 2234 2235 2236 2237 2238 ... 2315 2316