Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_a05e8a23f931fae4d0944249dc343c59 Methyl 2-methylbenzoate [M+FA-H]- 195.0663 143.94 CC1=CC=CC=C1C(=O)OC Benzenoids -1 29 TW polyala
CCSBASE_f368fc201d01e9dd1dc8f77ec44cd8df Cortisone [M+Cl]- 395.1631 191.8 CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_faa6b08914e0e85875fd3ac7d50bca19 Cortisone [M+FA-H]- 405.1919 192.47 CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_b8ab817ee36bf7632c012a368c22dd25 Cortisone [M+H]+ 361.2009 184.15 CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_4610d7ea6e8dfdcce5420778128024a8 Cortisone [M+H-H2O]+ 343.1904 181.02 CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_80d497e81a09f2382f1c2ecc932cb215 Cortisone [M-H]- 359.1864 184.79 CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_e2d431bcb964d3ce9322ae0fb1c04ad9 Cortisone [M-H-H2O]- 341.1753 183.15 CC12CCC(=O)C=C1CCC3C2C(=O)CC4(C3CCC4(C(=O)CO)O)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_562e3886c9654fa44e1a3298b3ecfab9 2-Ethylhexyl 2-methyl-2-propenoate [M+FA-H]- 243.1602 160.54 CCCCC(CC)COC(=O)C(=C)C Organic acids and derivatives -1 29 TW polyala
CCSBASE_9569ccd463be8dd364f5c8a3864a99cd Indan-5-ol [M+H]+ 135.0804 126.64 C1CC2=C(C1)C=C(C=C2)O Benzenoids 1 29 TW polyala
CCSBASE_8a351d9624c5730fabd712923aba4069 Indan-5-ol [M-H]- 133.0659 134.31 C1CC2=C(C1)C=C(C=C2)O Benzenoids -1 29 TW polyala
1 2 ... 2230 2231 2232 2233 2234 2235 2236 ... 2315 2316