Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_79d11243188d77eb9089cbf7b91562bd alpha-(2,5-Dichlorophenoxy)propionic acid [M-H]- 232.9777 152.4 CC(C(=O)O)OC1=C(C=CC(=C1)Cl)Cl Benzenoids -1 29 TW polyala
CCSBASE_56614f8c3b11d3625f367f629a543928 Cyclocytidine [M+H]+ 226.0823 141.21 C1=CN2C3C(C(C(O3)CO)O)OC2=NC1=N Organic oxygen compounds 1 29 TW polyala
CCSBASE_cf6c708ee043ef1cfa1c3589cb93b51e 4-(4-(Acetyloxy)phenyl)-2-butanone [M+H-H2O]+ 189.0911 139.61 CC(=O)CCC1=CC=C(C=C1)OC(=O)C Benzenoids 1 29 TW polyala
CCSBASE_de0273c2148d9c85e94f1619818fd0ed 4-(4-(Acetyloxy)phenyl)-2-butanone [M+Na]+ 229.0835 145.75 CC(=O)CCC1=CC=C(C=C1)OC(=O)C Benzenoids 1 29 TW polyala
CCSBASE_9b2e030de9b91652606c4a38a1d78d44 2,6-Diisopropylaniline [M+H]+ 178.159 146.98 CC(C)C1=C(C(=CC=C1)C(C)C)N Benzenoids 1 29 TW polyala
CCSBASE_b059de9078efd2a1f254d6ae1c85a328 Flavone [M+H]+ 223.0754 146.36 C1=CC=C(C=C1)C2=CC(=O)C3=CC=CC=C3O2 Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_4640d31d4012799da657d15ee4388bcb 4-Chlorophenylurea [M+H]+ 171.032 134.78 C1=CC(=CC=C1NC(=O)N)Cl Benzenoids 1 29 TW polyala
CCSBASE_fe9f7682a3c4d59e3860c8c5be1ccbe8 Flufenoxuron [M+H-H2O]+ 471.033 200.19 C1=CC(=C(C(=C1)F)C(=O)NC(=O)NC2=C(C=C(C=C2)OC3=C(C=C(C=C3)C(F)(F)F)Cl)F)F Benzenoids 1 29 TW polyala
CCSBASE_4d711bfc1635b7ff7a2da507fccb7915 Flufenoxuron [M-H]- 487.0289 214.43 C1=CC(=C(C(=C1)F)C(=O)NC(=O)NC2=C(C=C(C=C2)OC3=C(C=C(C=C3)C(F)(F)F)Cl)F)F Benzenoids -1 29 TW polyala
CCSBASE_da6b287fd42cfbde323deca2b493bc94 Flufenoxuron [M-H-H2O]- 469.0178 206.43 C1=CC(=C(C(=C1)F)C(=O)NC(=O)NC2=C(C=C(C=C2)OC3=C(C=C(C=C3)C(F)(F)F)Cl)F)F Benzenoids -1 29 TW polyala
1 2 ... 2216 2217 2218 2219 2220 2221 2222 ... 2315 2316