Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_335283c35d93ca42019e0496b960cfd9 5-Chlorosalicylanilide [M-H]- 246.0327 152.73 C1=CC=C(C=C1)NC(=O)C2=C(C=CC(=C2)Cl)O Benzenoids -1 29 TW polyala
CCSBASE_7e8ab14719a5dde3d4d38ce8b474590d Famoxadone [M+Na]+ 397.1159 204.54 CC1(C(=O)N(C(=O)O1)NC2=CC=CC=C2)C3=CC=C(C=C3)OC4=CC=CC=C4 Benzenoids 1 29 TW polyala
CCSBASE_32d923a0e2351389b6565bf95c647abb 4-Biphenylamine hydrochloride [M+H]+ 170.0964 146.57 C1=CC=C(C=C1)C2=CC=C(C=C2)N Benzenoids 1 29 TW polyala
CCSBASE_05d30237b8adfc87dce321dfc43513a8 (2R,5R)-5-Methyl-2-(propan-2-yl)cyclohexanone [M+FA-H]- 199.134 152.18 CC1CCC(C(=O)C1)C(C)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_4cd13344c03700898817276b735b36b7 3,3'-[Oxybis(ethane-2,1-diyloxy)]dipropan-1-amine [M+H]+ 221.186 149.29 C(CN)COCCOCCOCCCN Organic oxygen compounds 1 29 TW polyala
CCSBASE_21ce3156ea940a085e83d8175eb86f75 Indole-3-butyric acid [M+H]+ 204.1019 143.02 C1=CC=C2C(=C1)C(=CN2)CCCC(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_a560cb6d59d983c3cc9f19cf1faae71d Indole-3-butyric acid [M+H-H2O]+ 186.0914 137.95 C1=CC=C2C(=C1)C(=CN2)CCCC(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_be29ed4b267dc08f9ad15cba5b7ec40b Indole-3-butyric acid [M+K]+ 242.0578 154.28 C1=CC=C2C(=C1)C(=CN2)CCCC(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_feaaadb6ec7ef1bff55ff1af159c0a54 Indole-3-butyric acid [M-H]- 202.0873 155.27 C1=CC=C2C(=C1)C(=CN2)CCCC(=O)O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_4a47c3d6eb8a56e512fbf5c541933541 alpha-(2,5-Dichlorophenoxy)propionic acid [M-H]- 232.9777 166.33 CC(C(=O)O)OC1=C(C=CC(=C1)Cl)Cl Benzenoids -1 29 TW polyala
1 2 ... 2215 2216 2217 2218 2219 2220 2221 ... 2315 2316