Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_657f983ad3a277fb839bae66c5a134d6 Prothioconazole [M+H-H2O]+ 326.0281 164.79 C1CC1(C(CC2=CC=CC=C2Cl)(CN3C(=S)N=CN3)O)Cl Benzenoids 1 29 TW polyala
CCSBASE_d05c816dc405a62cd517b506b605da07 Prothioconazole [M+Na]+ 366.0205 173.0 C1CC1(C(CC2=CC=CC=C2Cl)(CN3C(=S)N=CN3)O)Cl Benzenoids 1 29 TW polyala
CCSBASE_8fc968a7436ee0ce6f1ef6a463f1ce97 Tetrabutylphosphonium chloride [M]+ 259.2549 173.84 CCCC[P+](CCCC)(CCCC)CCCC Organophosphorus compounds 1 29 TW polyala
CCSBASE_30654088b5b7d19fa602fa1e893275b6 L-Verbenone [M-H]- 149.0972 140.27 CC1=CC(=O)C2CC1C2(C)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_c2aa3ccee9c0fc21920cd576306b5bb1 BPS-MPE4 [M+H]+ 341.0842 182.13 C1=CC=C(C=C1)COC2=CC=C(C=C2)S(=O)(=O)C3=CC=C(C=C3)O Benzenoids 1 29 TW polyala
CCSBASE_2a33d0ceac32bf1168bd1ea46b3de6d3 BPS-MPE4 [M-H]- 339.0696 184.56 C1=CC=C(C=C1)COC2=CC=C(C=C2)S(=O)(=O)C3=CC=C(C=C3)O Benzenoids -1 29 TW polyala
CCSBASE_ea891619bd5c49965453d95c011ad81c Tetrabutyl ethylidenebisphenol [M+FA-H]- 483.348 215.17 CC(C1=C(C(=CC(=C1)C(C)(C)C)C(C)(C)C)O)C2=C(C(=CC(=C2)C(C)(C)C)C(C)(C)C)O Benzenoids -1 29 TW polyala
CCSBASE_05b4413fb20e268bec8ad05f8f5fb961 4-Chlorobenzoic acid [M-H]- 154.9905 132.84 C1=CC(=CC=C1C(=O)O)Cl Benzenoids -1 29 TW polyala
CCSBASE_9d185827f65a9a9b6214c68aa17683f6 Erythrosin B [M-H]- 834.6478 215.56 C1=CC=C2C(=C1)C(=O)OC23C4=CC(=C(C(=C4OC5=C(C(=C(C=C35)I)O)I)I)O)I Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_113218b881a06ceb359d3fec9853d902 Edifenphos [M+H]+ 311.0324 161.59 CCOP(=O)(SC1=CC=CC=C1)SC2=CC=CC=C2 Benzenoids 1 29 TW polyala
1 2 ... 2206 2207 2208 2209 2210 2211 2212 ... 2315 2316