Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_3125825e000f9f8026a20fa8bc317bb8 Sulfamethazine [M+Na]+ 301.073 169.65 CC1=CC(=NC(=N1)NS(=O)(=O)C2=CC=C(C=C2)N)C  Benzenoids 1 29 TW polyala
CCSBASE_00495a59d2db1266e0b2a6370495af44 Sulpiride [M+H]+ 342.1482 182.12 CCN1CCCC1CNC(=O)C2=C(C=CC(=C2)S(=O)(=O)N)OC   Benzenoids 1 29 TW polyala
CCSBASE_89d134dc4242c78b4bd80f88c9bd43f2 Sulpiride [M+Na]+ 364.1301 189.09 CCN1CCCC1CNC(=O)C2=C(C=CC(=C2)S(=O)(=O)N)OC   Benzenoids 1 29 TW polyala
CCSBASE_d4eb6cf38b415bc09ce37bf9f5b24626 Sulpiride [M-H]- 340.1336 187.41 CCN1CCCC1CNC(=O)C2=C(C=CC(=C2)S(=O)(=O)N)OC Benzenoids -1 29 TW polyala
CCSBASE_80cee985e68d6322893bf73e32a8d5a8 Tamoxifen [M+H]+ 372.2322 195.93 CC/C(=C(\C1=CC=CC=C1)/C2=CC=C(C=C2)OCCN(C)C)/C3=CC=CC=C3  Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_9e0155cc9df16b1c926ee1f14e2c8040 Tembotrione [M+Na]+ 463.02 183.37 CS(=O)(=O)C1=C(C(=C(C=C1)C(=O)C2C(=O)CCCC2=O)Cl)COCC(F)(F)F   Organic oxygen compounds 1 29 TW polyala
CCSBASE_261aafcdb69ebb950fb027201c6c8ae9 Tembotrione [M-H]- 439.0235 191.19 CS(=O)(=O)C1=C(C(=C(C=C1)C(=O)C2C(=O)CCCC2=O)Cl)COCC(F)(F)F Organic oxygen compounds -1 29 TW polyala
CCSBASE_46871c43885c12a513a5864aa9a494d4 Terbufos sulfone [M+Na]+ 343.0232 169.62 CCOP(=S)(OCC)SCS(=O)(=O)C(C)(C)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_c6794d59cb02927394515d05010a1851 tert-Butyl 4-hydroxybenzoate [M-H]- 193.087 150.49 CC(C)(C)OC(=O)C1=CC=C(C=C1)O Benzenoids -1 29 TW polyala
CCSBASE_06b1bd1bc2ff390504f747603cdf6a59 tert-Butylperoxy 2-ethylhexyl carbonate [M-H-H2O]- 227.1647 160.01 CCCCC(CC)COC(=O)OOC(C)(C)C Organic acids and derivatives -1 29 TW polyala
1 2 ... 2197 2198 2199 2200 2201 2202 2203 ... 2315 2316