Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_5c554e35e44e92c823ae28c723318353 Spironolactone [M+Na]+ 439.1913 205.7 CC(=O)SC1CC2=CC(=O)CCC2(C3C1C4CCC5(C4(CC3)C)CCC(=O)O5)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_881d9a359e9f1fdb600fe3f5306de797 Spironolactone [M+Na]+ 439.1913 191.85 CC(=O)SC1CC2=CC(=O)CCC2(C3C1C4CCC5(C4(CC3)C)CCC(=O)O5)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_ab871c4ad4c540f355d3f91325b8fefd Spironolactone [M+Na]+ 439.1913 223.77 CC(=O)SC1CC2=CC(=O)CCC2(C3C1C4CCC5(C4(CC3)C)CCC(=O)O5)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_36f5858789c5bbc23c69e995ceeb3ad6 SSR 240612 [M+H]+ 757.3629 268.95 C[C@@H]1CCC[C@@H](N1CC2=CC=C(C=C2)C[C@H](C(=O)N(C)C(C)C)NC(=O)C[C@H](C3=CC4=C(C=C3)OCO4)NS(=O)(=O)C5=CC6=C(C=C5)C=C(C=C6)OC)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_9e3fd46ce358fc09c6a2911236a46005 SSR 240612 [M+Na]+ 779.3449 283.42 C[C@@H]1CCC[C@@H](N1CC2=CC=C(C=C2)C[C@H](C(=O)N(C)C(C)C)NC(=O)C[C@H](C3=CC4=C(C=C3)OCO4)NS(=O)(=O)C5=CC6=C(C=C5)C=C(C=C6)OC)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_aa5f5f76a1b9eb6b3ef53db77d98427a SSR 240612 [M-H]- 755.3484 273.85 CC1CCCC(N1CC2=CC=C(C=C2)CC(C(=O)N(C)C(C)C)NC(=O)CC(C3=CC4=C(C=C3)OCO4)NS(=O)(=O)C5=CC6=C(C=C5)C=C(C=C6)OC)C Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_a37a0de26f514d6162d6fb614d173a4c Sucralose [M+Cl]- 430.984 180.63 C(C1C(C(C(C(O1)OC2(C(C(C(O2)CCl)O)O)CCl)O)O)Cl)O Organic oxygen compounds -1 29 TW polyala
CCSBASE_3a931b1ed9f96cada834f8cf03f32e86 Sucralose [M+Na]+ 419.0038 176.89 C([C@@H]1[C@@H]([C@@H]([C@H]([C@H](O1)O[C@]2([C@H]([C@@H]([C@H](O2)CCl)O)O)CCl)O)O)Cl)O   Organic oxygen compounds 1 29 TW polyala
CCSBASE_76ee44b2ac38b22d5fa843991f277620 Sucralose [M-H]- 395.0073 175.92 C(C1C(C(C(C(O1)OC2(C(C(C(O2)CCl)O)O)CCl)O)O)Cl)O Organic oxygen compounds -1 29 TW polyala
CCSBASE_1c7230b2022f57fe5e47941b37b75eee Sulfamethazine [M+H]+ 279.091 161.83 CC1=CC(=NC(=N1)NS(=O)(=O)C2=CC=C(C=C2)N)C  Benzenoids 1 29 TW polyala
1 2 ... 2196 2197 2198 2199 2200 2201 2202 ... 2315 2316