Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_b65025207a87163e40f95a96a114160f Chloropropylate [M+H-H2O]+ 321.0444 171.0 CC1=NC=C(N1CC(CCl)O)[N+](=O)[O-]  Benzenoids 1 29 TW polyala
CCSBASE_c0bf15f95f19be29af636d009c116380 Chlorotrianisene [M+H]+ 381.1252 188.67 COC1=CC=C(C=C1)C(=C(C2=CC=C(C=C2)OC)Cl)C3=CC=C(C=C3)OC Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_7cb5e06585c97c9da8be545abf28d72c Chloroxuron [M+H]+ 291.0895 171.51 CN(C)C(=O)NC1=CC=C(C=C1)OC2=CC=C(C=C2)Cl   Benzenoids 1 29 TW polyala
CCSBASE_ec6e940c1f87d283ef0cac8a22caf9fa Chloroxuron [M+Na]+ 313.0714 180.08 CN(C)C(=O)NC1=CC=C(C=C1)OC2=CC=C(C=C2)Cl   Benzenoids 1 29 TW polyala
CCSBASE_9b59eecec92d1cd3a8bf5beaffdc1cf9 Chlorpheniramine maleate [M+H]+ 275.131 163.73 CN(C)CCC(C1=CC=C(C=C1)Cl)C2=CC=CC=N2 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_26012d49677b0f684f8b478c65c703cf Chlorpropamide [M+H]+ 277.0408 158.53 CCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)Cl  Benzenoids 1 29 TW polyala
CCSBASE_fa42ed09f3eaa0269c1a0aa761cea512 Chlorpropamide [M+Na]+ 299.0228 169.47 CCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)Cl  Benzenoids 1 29 TW polyala
CCSBASE_4e8faa0f2286caac2cedfd7fdd9a71ac Chlorpropamide [M-H]- 275.0262 162.41 CCCNC(=O)NS(=O)(=O)C1=CC=C(C=C1)Cl Benzenoids -1 29 TW polyala
CCSBASE_272b94f02e1c356fa5275ca4e549936d CI-1044 [M+H]+ 398.1612 196.47 C1CN2C(=O)[C@@H](N=C(C3=CC(=CC1=C32)N)C4=CC=CC=C4)NC(=O)C5=CN=CC=C5   Organic acids and derivatives 1 29 TW polyala
CCSBASE_cfda54e75d63a33ff99b5f1874237a25 CI-1044 [M+Na]+ 420.1431 205.42 C1CN2C(=O)[C@@H](N=C(C3=CC(=CC1=C32)N)C4=CC=CC=C4)NC(=O)C5=CN=CC=C5   Organic acids and derivatives 1 29 TW polyala
1 2 ... 2173 2174 2175 2176 2177 2178 2179 ... 2315 2316