Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_b76ad7f0e56345d848dc0a6db83479ec Digoxigenin [M+H-H2O]+ 373.2374 190.88 C[C@]12CC[C@@H](C[C@H]1CC[C@@H]3[C@@H]2C[C@H]([C@]4([C@@]3(CC[C@@H]4C5=CC(=O)OC5)O)C)O)O  Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_377c2089182065f282e5a6acee27371f Digoxigenin [M+K]+ 429.2038 211.58 CC12CCC(CC1CCC3C2CC(C4(C3(CCC4C5=CC(=O)OC5)O)C)O)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_675eb8eeead25eca75297e64f990181e Digoxigenin [M+K]+ 429.2038 189.95 CC12CCC(CC1CCC3C2CC(C4(C3(CCC4C5=CC(=O)OC5)O)C)O)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_895aad09b4f3f98d7151ce6182ce305c Digoxigenin [M+Na]+ 413.2298 216.06 C[C@]12CC[C@@H](C[C@H]1CC[C@@H]3[C@@H]2C[C@H]([C@]4([C@@]3(CC[C@@H]4C5=CC(=O)OC5)O)C)O)O  Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_2d847efb28b6201bb9f1562ae2ebe03e Digoxigenin [M-H]- 389.2333 199.12 CC12CCC(CC1CCC3C2CC(C4(C3(CCC4C5=CC(=O)OC5)O)C)O)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_ba4f2604cc1c801c3f8bb050ca229a36 Diniconazole [M+H]+ 326.0821 173.36 CC(C)(C)C(/C(=C\C1=C(C=C(C=C1)Cl)Cl)/N2C=NC=N2)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_65efb4af19e57ad100e85d15fc8e26f2 Diniconazole [M+H-H2O]+ 308.0716 167.53 CC(C)(C)C(/C(=C\C1=C(C=C(C=C1)Cl)Cl)/N2C=NC=N2)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_534a2e0a4523d6249b193c636ef5e481 Dinitramine [M+H]+ 323.0962 159.46 CCN(CC)C1=C(C=C(C(=C1[N+](=O)[O-])N)C(F)(F)F)[N+](=O)[O-]   Benzenoids 1 29 TW polyala
CCSBASE_aa0e2a28d40605e8ffc007f8c500e335 Dinitramine [M-H]- 321.0816 161.22 CCN(CC)C1=C(C=C(C(=C1[N+](=O)[O-])N)C(F)(F)F)[N+](=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_acf53a73cee79cea658761e4c9de6bf5 Dipentyl phthalate [M+Na]+ 329.1723 190.06 CCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCC   Benzenoids 1 29 TW polyala
1 2 ... 2176 2177 2178 2179 2180 2181 2182 ... 2315 2316