Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_0da2d5875a8c411b2185da49b34e6694 Sodium diethyldithiocarbamate trihydrate [M-H]- 148.026 133.72 CCN(CC)C(=S)[S-] Organic salts -1 29 TW polyala
CCSBASE_7310840dedc0b80487faacc74cf496e8 Clethodim [M-H]- 358.1249 188.52 CCC(=NOCC=CCl)C1=C(CC(CC1=O)CC(C)SCC)O Organic oxygen compounds -1 29 TW polyala
CCSBASE_5095b59f43fc4355728a442747bee1de 2,4,6-Trinitro-1,3-dimethyl-5-tert-butylbenzene [M-H]- 296.0888 161.42 CC1=C(C(=C(C(=C1[N+](=O)[O-])C(C)(C)C)[N+](=O)[O-])C)[N+](=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_acb3c2e85381a6236d185e74a9bc5026 1-Nitronaphthalene [M-H]- 172.0404 133.68 C1=CC=C2C(=C1)C=CC=C2[N+](=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_3082ff6b50dad6a8da506ce679b2d41f Flurandrenolide [M-H]- 435.2188 201.13 CC1(OC2CC3C4CC(C5=CC(=O)CCC5(C4C(CC3(C2(O1)C(=O)CO)C)O)C)F)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_05887967ca91e13cf5007fdc543474e3 4,4'-(9H-Fluorene-9,9-diyl)diphenol [M-H]- 349.1234 193.85 C1=CC=C2C(=C1)C3=CC=CC=C3C2(C4=CC=C(C=C4)O)C5=CC=C(C=C5)O Benzenoids -1 29 TW polyala
CCSBASE_ff3b8bc129cf2143307612e9180b74c8 3-[3,5-DI(tert-butyl)-4-hydroxyphenyl]propanohydrazide [M-H]- 291.2078 177.18 CC(C)(C)C1=CC(=CC(=C1O)C(C)(C)C)CCC(=O)NN Benzenoids -1 29 TW polyala
CCSBASE_4d132d4ccc1edb7b9f71c17d2716798d Amiprofos-methyl [M-H]- 303.0574 164.48 CC1=CC(=C(C=C1)OP(=S)(NC(C)C)OC)[N+](=O)[O-] Benzenoids -1 29 TW polyala
CCSBASE_911fe9790b4f95a975e6c4524fe7cf31 Aminoglutethimide [M+H]+ 233.1285 165.94 CCC1(CCC(=O)NC1=O)C2=CC=C(C=C2)N Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_11d88bd71fb6912ce18326e156a5684d Aminoglutethimide [M+H]+ 233.1285 151.39 CCC1(CCC(=O)NC1=O)C2=CC=C(C=C2)N Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2104 2105 2106 2107 2108 2109 2110 ... 2315 2316