Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_7813768e14ad8ed3a70b81c00ec21cda Ethyl 3-(N-butylacetamido)propionate [M-H]- 214.1448 153.91 CCCCN(CCC(=O)OCC)C(=O)C Benzenoids -1 29 TW polyala
CCSBASE_093ff0d9adc5dc8fd9dda9a2d2b50716 Trelanserin [M+H]+ 466.1708 195.45 C1CN(CCN1CCC2=CC(=O)N(C3=C2C=CC(=C3)F)CC(=O)N)C4=NC=CC5=C4C=CS5 Organic acids and derivatives 1 29 TW polyala
CCSBASE_757c13833ddc3941019407eea3a83e10 Trelanserin [M+K]+ 504.1267 207.02 C1CN(CCN1CCC2=CC(=O)N(C3=C2C=CC(=C3)F)CC(=O)N)C4=NC=CC5=C4C=CS5 Organic acids and derivatives 1 29 TW polyala
CCSBASE_00675793f5465fffce5bc248f5e5e289 Aldoxycarb [M+K]+ 261.0306 150.31 CC(C)(C=NOC(=O)NC)S(=O)(=O)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_0ef5923f87476c2274ba0ca4aea26468 Aldoxycarb [M+Na]+ 245.0566 148.4 CC(C)(C=NOC(=O)NC)S(=O)(=O)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_63b20e119a9f9aa25e1f74d165faee90 Trelanserin [M+Na]+ 488.1527 204.71 C1CN(CCN1CCC2=CC(=O)N(C3=C2C=CC(=C3)F)CC(=O)N)C4=NC=CC5=C4C=CS5 Organic acids and derivatives 1 29 TW polyala
CCSBASE_86e4d840c41fff93c80024bceb5782a6 Trelanserin [M+Na]+ 488.1527 169.87 C1CN(CCN1CCC2=CC(=O)N(C3=C2C=CC(=C3)F)CC(=O)N)C4=NC=CC5=C4C=CS5 Organic acids and derivatives 1 29 TW polyala
CCSBASE_c96e1df5f082ee647b324004a8ad9a22 2-Ethylbutyric acid [M-H]- 115.0764 134.55 CCC(CC)C(=O)O None -1 29 TW polyala
CCSBASE_aff7328080a8be8826ff4c19f9ff81cb 1,2-Diethoxybenzene [M+FA-H]- 211.0976 151.81 CCOC1=CC=CC=C1OCC None -1 29 TW polyala
CCSBASE_373954ccb4d0b7297877485954fa5d5c N-(4-Methylpentan-2-yl)-N-phenylbenzene-1,4-diamine [M+H]+ 269.2012 173.5 CC(C)CC(C)N(C1=CC=CC=C1)C2=CC=C(C=C2)N  None 1 29 TW polyala
1 2 ... 2107 2108 2109 2110 2111 2112 2113 ... 2315 2316