Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_cce19b3662751c523f39fd73a006ce2e Genistein [M+H-H2O]+ 253.0496 148.99 C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_80a8a83763920c6a8650d4f8df9ad932 Genistein [M+Na]+ 293.042 168.22 C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_e856c5da3abbfd2037851b77abba9605 Genistein [M-H]- 269.0455 161.05 C1=CC(=CC=C1C2=COC3=CC(=CC(=C3C2=O)O)O)O Phenylpropanoids and polyketides -1 29 TW polyala
CCSBASE_659af61ecd6b6cc5ac8896a21e80e12f Diisobutyl phthalate [M+K]+ 317.115 179.47 CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C Benzenoids 1 29 TW polyala
CCSBASE_efdd65876c2f6f34e14757a5ae53096f Diisobutyl phthalate [M+Na]+ 301.141 179.48 CC(C)COC(=O)C1=CC=CC=C1C(=O)OCC(C)C Benzenoids 1 29 TW polyala
CCSBASE_4c41aa946a01ae00473cbf7fee468ca6 Sodium octyl sulfate [M-H]- 209.0853 155.65 CCCCCCCCOS(=O)(=O)[O-] Organic acids and derivatives -1 29 TW polyala
CCSBASE_c57edd1e60a3cd8724bf19701dcac287 SAR115740 [M+H]+ 402.1412 191.72 C1=CC(=CC(=C1)F)CN2C3=C(C=C(C=C3)F)C=C2C(=O)NC4=CC5=C(C=C4)NC=C5 None 1 29 TW polyala
CCSBASE_939327eb156a7a0f8f0e1447c650dbd9 SAR115740 [M+K]+ 440.0971 198.17 C1=CC(=CC(=C1)F)CN2C3=C(C=C(C=C3)F)C=C2C(=O)NC4=CC5=C(C=C4)NC=C5 None 1 29 TW polyala
CCSBASE_b0fff16317a8accacd296402abb01e89 SAR115740 [M+Na]+ 424.1232 197.81 C1=CC(=CC(=C1)F)CN2C3=C(C=C(C=C3)F)C=C2C(=O)NC4=CC5=C(C=C4)NC=C5 None 1 29 TW polyala
CCSBASE_c9dc6a58d6487476889d75796fc4f00c SAR115740 [M-H]- 400.1267 199.82 C1=CC(=CC(=C1)F)CN2C3=C(C=C(C=C3)F)C=C2C(=O)NC4=CC5=C(C=C4)NC=C5 None -1 29 TW polyala
1 2 ... 2063 2064 2065 2066 2067 2068 2069 ... 2315 2316