Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_df16f7976e6f2e5f29d86f1b89b154b4 Ethisterone [M+Na]+ 335.1981 176.88 CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4(C#C)O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_4e652d594302fe8b9f0191d6cdf1724a Ethisterone [M-H]- 311.2017 181.65 CC12CCC(=O)C=C1CCC3C2CCC4(C3CCC4(C#C)O)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_f0ceda1df8d122a48956926f67a2b1c6 Benzyl salicylate [M-H]- 227.0714 155.85 C1=CC=C(C=C1)COC(=O)C2=CC=CC=C2O Benzenoids -1 29 TW polyala
CCSBASE_2b6edb6b75af85361cca8ace729b28b7 3-Octanone [M+FA-H]- 173.1183 146.27 CCCCCC(=O)CC Organic oxygen compounds -1 29 TW polyala
CCSBASE_255c6b71575c89b58020fb5a4aa95612 N,N-Diisopropylaniline [M+H]+ 178.159 142.21 CC(C)N(C1=CC=CC=C1)C(C)C Organic nitrogen compounds 1 29 TW polyala
CCSBASE_f91818e3dbca36395c3fd45d3760a335 Decyl prop-2-enoate [M+FA-H]- 257.1758 164.96 CCCCCCCCCCOC(=O)C=C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_78539509b6d877c7c42b94b2e9dfd16f Pentaerythritol tetraacrylate [M+Na]+ 375.105 177.76 C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C Organic acids and derivatives 1 29 TW polyala
CCSBASE_3a3c847a2fd07b079d37d62309befb89 CP-471358 [M+K]+ 505.0842 208.28 C1CCC(C1)(C(=O)NO)N(CCC(=O)O)S(=O)(=O)C2=CC=C(C=C2)OC3=CC=C(C=C3)F Benzenoids 1 29 TW polyala
CCSBASE_cca6b6ea4c874d251fb5b57bf9f75058 CP-471358 [M+Na]+ 489.1102 206.08 C1CCC(C1)(C(=O)NO)N(CCC(=O)O)S(=O)(=O)C2=CC=C(C=C2)OC3=CC=C(C=C3)F Benzenoids 1 29 TW polyala
CCSBASE_4f562003b1b3d18eae579ef593355b21 CP-471358 [M-H]- 465.1137 199.45 C1CCC(C1)(C(=O)NO)N(CCC(=O)O)S(=O)(=O)C2=CC=C(C=C2)OC3=CC=C(C=C3)F Benzenoids -1 29 TW polyala
1 2 ... 2067 2068 2069 2070 2071 2072 2073 ... 2315 2316