Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_59982ad69a22dcb1f27e1fab7c18f31f Carabersat [M+H]+ 358.1449 182.17 CC(=O)C1=CC2=C(C=C1)OC(C(C2NC(=O)C3=CC=C(C=C3)F)O)(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_50f3d625a26e4fffb5f2d0fba257154b Carabersat [M+H-H2O]+ 340.1344 180.38 CC(=O)C1=CC2=C(C=C1)OC(C(C2NC(=O)C3=CC=C(C=C3)F)O)(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_998356f0e124fd6bcedf36ddbd0a8ca5 Carabersat [M+K]+ 396.1008 192.63 CC(=O)C1=CC2=C(C=C1)OC(C(C2NC(=O)C3=CC=C(C=C3)F)O)(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_a1bdfb080b36d78099e0a090c8547fec Carabersat [M+Na]+ 380.1269 190.45 CC(=O)C1=CC2=C(C=C1)OC(C(C2NC(=O)C3=CC=C(C=C3)F)O)(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_12ddcb413da200b27ae9243efe009a2b Carabersat [M-H]- 356.1303 187.04 CC(=O)C1=CC2=C(C=C1)OC(C(C2NC(=O)C3=CC=C(C=C3)F)O)(C)C Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_45f991ecf2048b79cfd06126d687a903 Carabersat [M-H-H2O]- 338.1192 184.93 CC(=O)C1=CC2=C(C=C1)OC(C(C2NC(=O)C3=CC=C(C=C3)F)O)(C)C Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_b21d600cc4fa2cc2f50f82a537160a03 1,3,6-Hexanetricarbonitrile [M+H]+ 162.1026 136.62 C(CC#N)CC(CCC#N)C#N Organic nitrogen compounds 1 29 TW polyala
CCSBASE_c457a76ca4d995b2833bdb34a05a0ee7 Sodium ethasulfate [M-H]- 209.0853 153.74 CCCCC(CC)COS(=O)(=O)[O-] Organic acids and derivatives -1 29 TW polyala
CCSBASE_4c8293cb8c3a7bddf0cc1b96ccfd5752 Crufomate [M+H]+ 292.0864 164.81 CC(C)(C)C1=CC(=C(C=C1)OP(=O)(NC)OC)Cl Benzenoids 1 29 TW polyala
CCSBASE_c35286da929b911dd314577d0414bda6 Crufomate [M+Na]+ 314.0683 175.29 CC(C)(C)C1=CC(=C(C=C1)OP(=O)(NC)OC)Cl Benzenoids 1 29 TW polyala
1 2 ... 2055 2056 2057 2058 2059 2060 2061 ... 2315 2316