Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_bc7495d217a063575f6e4d11afbcbfa6 N,N-dimethylpyridin-4-amine [M+H]+ 123.0917 126.88 CN(C)C1=CC=NC=C1 Organic nitrogen compounds 1 29 TW polyala
CCSBASE_a8fc6111590658b1e589b410ba1e6ee1 Sodium 3-chloro-2-hydroxypropane-1-sulfonate [M-H]- 172.9681 131.08 C(C(CCl)O)S(=O)(=O)[O-] Organic acids and derivatives -1 29 TW polyala
CCSBASE_cddcac13bf2b3b6d17d8899322effaf0 4'-Fluoro-4-aminodiphenyl [M+H]+ 188.087 148.58 C1=CC(=CC=C1C2=CC=C(C=C2)F)N Benzenoids 1 29 TW polyala
CCSBASE_f179b3b15cc8e7369f343dc6522c0907 1-Butyl-3-methylimidazolium chloride [M]+ 139.123 130.52 CCCCN1C=C[N+](=C1)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c0089f54f55b66000e9eb89189a3ba51 C.I. Disperse Blue 27 [M+H]+ 421.103 193.44 C1=CC(=CC=C1CCO)NC2=C3C(=C(C=C2)O)C(=O)C4=C(C=CC(=C4C3=O)[N+](=O)[O-])O Benzenoids 1 29 TW polyala
CCSBASE_e482af11088dfb32c4ed056e1d9ce4f7 C.I. Disperse Blue 27 [M-H]- 419.0885 200.07 C1=CC(=CC=C1CCO)NC2=C3C(=C(C=C2)O)C(=O)C4=C(C=CC(=C4C3=O)[N+](=O)[O-])O Benzenoids -1 29 TW polyala
CCSBASE_c2d13b74c26310fc639b08c1e8236a1a Cybutryne [M+H]+ 254.1434 163.46 CC(C)(C)NC1=NC(=NC(=N1)NC2CC2)SC Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_5ab7ab9e468d9e4eb805da220eeb0284 2,4-Diisopropylphenol [M+FA-H]- 223.134 159.44 CC(C)C1=CC(=C(C=C1)O)C(C)C Benzenoids -1 29 TW polyala
CCSBASE_557df1f6c00acef2c2e4ce5567038ad2 Sodium dodecyl sulfate [M-H]- 265.1479 170.33 CCCCCCCCCCCCOS(=O)(=O)[O-] Organic acids and derivatives -1 29 TW polyala
CCSBASE_79d705a80c2f87f834dd71bcb3892d11 Salicylic acid [M-H]- 137.0244 127.53 C1=CC=C(C(=C1)C(=O)O)O Benzenoids -1 29 TW polyala
1 2 ... 2054 2055 2056 2057 2058 2059 2060 ... 2315 2316