Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_aacc53a86c5bc233d016983e04f6dfca Tefluthrin [M+H]+ 419.0643 177.73 CC1=C(C(=C(C(=C1F)F)COC(=O)C2C(C2(C)C)C=C(C(F)(F)F)Cl)F)F Benzenoids 1 29 TW polyala
CCSBASE_bd6a52a126f0135d07ec5bff517eb5a4 2-Naphthylamine [M+H]+ 144.0808 128.98 C1=CC=C2C=C(C=CC2=C1)N Benzenoids 1 29 TW polyala
CCSBASE_119f86349469d3b0abdd7b7276159215 Triamcinolone [M+Cl]- 429.1486 192.34 CC12CC(C3(C(C1CC(C2(C(=O)CO)O)O)CCC4=CC(=O)C=CC43C)F)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_3f95cd8867123676e129a211c12596ca Triamcinolone [M+FA-H]- 439.1774 197.95 CC12CC(C3(C(C1CC(C2(C(=O)CO)O)O)CCC4=CC(=O)C=CC43C)F)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_949ee52e2e0e22d2ef671c9a6097de22 Triamcinolone [M+H]+ 395.1864 186.23 CC12CC(C3(C(C1CC(C2(C(=O)CO)O)O)CCC4=CC(=O)C=CC43C)F)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_340ab66296debdba140e7be85f9e2592 Triamcinolone [M+Na]+ 417.1684 209.59 CC12CC(C3(C(C1CC(C2(C(=O)CO)O)O)CCC4=CC(=O)C=CC43C)F)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_afb3f89e66055a4e34350a1d09c2ba92 Triamcinolone [M+Na]+ 417.1684 198.06 CC12CC(C3(C(C1CC(C2(C(=O)CO)O)O)CCC4=CC(=O)C=CC43C)F)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_a80745c7c765434ef8a0ed3e99f0168e Triamcinolone [M-H-H2O]- 375.1608 188.36 CC12CC(C3(C(C1CC(C2(C(=O)CO)O)O)CCC4=CC(=O)C=CC43C)F)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_88fb2bba3d1462faa32bfb0572ea0122 Phenol red [M+H]+ 355.0635 176.83 C1=CC=C2C(=C1)C(OS2(=O)=O)(C3=CC=C(C=C3)O)C4=CC=C(C=C4)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_feeca2a403e45619d7820e75447b6b23 Phenol red [M+Na]+ 377.0454 188.23 C1=CC=C2C(=C1)C(OS2(=O)=O)(C3=CC=C(C=C3)O)C4=CC=C(C=C4)O Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 2042 2043 2044 2045 2046 2047 2048 ... 2315 2316