Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_17a1dcef3464c5bacef52609cfb3e39d Tebufenozide [M+K]+ 391.1782 198.56 CCC1=CC=C(C=C1)C(=O)NN(C(=O)C2=CC(=CC(=C2)C)C)C(C)(C)C Benzenoids 1 29 TW polyala
CCSBASE_9df8e967535ed2e81e70a0dc190187b6 Tebufenozide [M+Na]+ 375.2043 182.52 CCC1=CC=C(C=C1)C(=O)NN(C(=O)C2=CC(=CC(=C2)C)C)C(C)(C)C Benzenoids 1 29 TW polyala
CCSBASE_cc4f2a99a11aaff6d90e4312e53a520c Tebufenozide [M+Na]+ 375.2043 196.82 CCC1=CC=C(C=C1)C(=O)NN(C(=O)C2=CC(=CC(=C2)C)C)C(C)(C)C Benzenoids 1 29 TW polyala
CCSBASE_2fc4304626e3d567ee724c6719d43d58 Tebufenozide [M-H]- 351.2078 194.61 CCC1=CC=C(C=C1)C(=O)NN(C(=O)C2=CC(=CC(=C2)C)C)C(C)(C)C Benzenoids -1 29 TW polyala
CCSBASE_02ce4208245ab2a85554803763cf14d1 SR58611 [M+H]+ 404.1623 191.62 CCOC(=O)COC1=CC2=C(CCC(C2)NCC(C3=CC(=CC=C3)Cl)O)C=C1 Benzenoids 1 29 TW polyala
CCSBASE_99da1fc62b9dc6bb3ecb608ac89125c0 SR58611 [M+H-H2O]+ 386.1518 190.4 CCOC(=O)COC1=CC2=C(CCC(C2)NCC(C3=CC(=CC=C3)Cl)O)C=C1 Benzenoids 1 29 TW polyala
CCSBASE_31e898bf37be7fe822737b0b1df38c86 SR58611 [M+Na]+ 426.1443 197.69 CCOC(=O)COC1=CC2=C(CCC(C2)NCC(C3=CC(=CC=C3)Cl)O)C=C1 Benzenoids 1 29 TW polyala
CCSBASE_c6b89addbbb211fa78c792c6dcfd8b1d N-Ethyl-3-methylaniline [M+H]+ 136.1121 132.02 CCNC1=CC=CC(=C1)C Benzenoids 1 29 TW polyala
CCSBASE_9cadd6f9a0d6a4da330b6b3384b062e2 2-Butyloctan-1-ol [M+Na]+ 209.1876 153.3 CCCCCCC(CCCC)CO Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_461677aae119a92ddcb265561650f1aa 2,4,5-Trichlorophenol sodium salt [M-H]- 194.9176 134.0 C1=C(C(=CC(=C1Cl)Cl)Cl)[O-] Benzenoids -1 29 TW polyala
1 2 ... 2041 2042 2043 2044 2045 2046 2047 ... 2315 2316