Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_7040c61590ef6830365418775eef79e8 Benzidine [M+H]+ 185.1073 150.1 C1=CC(=CC=C1C2=CC=C(C=C2)N)N Benzenoids 1 29 TW polyala
CCSBASE_ccf826be6bf8ef3f59ea61501254d150 Triphenyltin fluoride [M+H-H2O]+ 353.0148 164.64 C1=CC=C(C=C1)[Sn](C2=CC=CC=C2)(C3=CC=CC=C3)F Benzenoids 1 29 TW polyala
CCSBASE_131c29d9c22e3284a2bf088d9571a7e0 PharmaGSID_48513 [M+Cl]- 648.1869 240.92 CC1=C(C=CC(=C1)F)C2=CC(=NC=C2N(C)C(=O)C(C)(C)C3=CC(=CC(=C3)C(F)(F)F)C(F)(F)F)N4CCC(C4CO)O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_9e30035d54eb29db4d4a758de86047b5 PharmaGSID_48513 [M+FA-H]- 658.2157 243.91 CC1=C(C=CC(=C1)F)C2=CC(=NC=C2N(C)C(=O)C(C)(C)C3=CC(=CC(=C3)C(F)(F)F)C(F)(F)F)N4CCC(C4CO)O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_aef4726dd095594d7864c763e4f97dda PharmaGSID_47263 [M+H]+ 285.1346 168.16 CCN1C2=C(C(=N1)C)N=C(CNC2=O)C3=CC=C(C=C3)O Organic acids and derivatives 1 29 TW polyala
CCSBASE_818985a66e584c1983a4d04069a2a141 PharmaGSID_47263 [M-H]- 283.12 172.5 CCN1C2=C(C(=N1)C)N=C(CNC2=O)C3=CC=C(C=C3)O Organic acids and derivatives -1 29 TW polyala
CCSBASE_f64e478e6a31e4ce2d861489594f1794 N-Phenyl-1,4-benzenediamine [M+H]+ 185.1073 141.12 C1=CC=C(C=C1)NC2=CC=C(C=C2)N Benzenoids 1 29 TW polyala
CCSBASE_eb9b2bd6b2d1af7af98a883a283618e5 Metconazole [M+FA-H]- 364.1433 184.26 CC1(CCC(C1(CN2C=NC=N2)O)CC3=CC=C(C=C3)Cl)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_0a77dfd6686f05429f992418c3a65f34 Metconazole [M+H]+ 320.1524 169.03 CC1(CCC(C1(CN2C=NC=N2)O)CC3=CC=C(C=C3)Cl)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_14d8f51cd5f2e9adfedcfb02315f1246 Metconazole [M+H-H2O]+ 302.1419 180.71 CC1(CCC(C1(CN2C=NC=N2)O)CC3=CC=C(C=C3)Cl)C Lipids and lipid-like molecules 1 29 TW polyala
1 2 ... 2033 2034 2035 2036 2037 2038 2039 ... 2315 2316