Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_23131f8c53b16a93620ee97c84c0d407 Ethylhexadecyldimethylammonium bromide [M]+ 298.3468 200.37 CCCCCCCCCCCCCCCC[N+](C)(C)CC Organic nitrogen compounds 1 29 TW polyala
CCSBASE_d99c8453bf6dd5b54946cf304bc13ef0 CP-863187 [M+H]+ 341.1209 175.5 CC(C)C1=NN=C2N1C=C(C=C2)C3=C(N=CO3)C4=C(C=CC(=C4)F)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_9afc9131f1c0ad56315457b95a3712a4 CP-863187 [M+Na]+ 363.1028 193.12 CC(C)C1=NN=C2N1C=C(C=C2)C3=C(N=CO3)C4=C(C=CC(=C4)F)F Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_722c57b6e17429e3ac592382d16261e3 4-Cyclohexylcyclohexanone [M+FA-H]- 225.1496 160.38 C1CCC(CC1)C2CCC(=O)CC2 Organic oxygen compounds -1 29 TW polyala
CCSBASE_55d831ca3b6461ff417c270116a65599 Flucarbazone-sodium [M+H]+ 397.0424 174.05 CN1C(=NN(C1=O)C(=O)[N-]S(=O)(=O)C2=CC=CC=C2OC(F)(F)F)OC Benzenoids 1 29 TW polyala
CCSBASE_78c3b1d4f277bbfd339ed1c50107ad5e Flucarbazone-sodium [M+K]+ 434.9983 185.32 CN1C(=NN(C1=O)C(=O)[N-]S(=O)(=O)C2=CC=CC=C2OC(F)(F)F)OC Benzenoids 1 29 TW polyala
CCSBASE_25c7b02144e67c22a5c5fe2128e08cd9 Flucarbazone-sodium [M+Na]+ 419.0243 183.0 CN1C(=NN(C1=O)C(=O)[N-]S(=O)(=O)C2=CC=CC=C2OC(F)(F)F)OC Benzenoids 1 29 TW polyala
CCSBASE_bb7fdfc98f19454fa88d067644a1f204 Flucarbazone-sodium [M-H]- 395.0278 182.96 CN1C(=NN(C1=O)C(=O)[N-]S(=O)(=O)C2=CC=CC=C2OC(F)(F)F)OC Benzenoids -1 29 TW polyala
CCSBASE_66566a4a55187979eb6b5a38beb4e5c3 Oxypurinol [M-H]- 151.0261 129.22 C1=NNC2=C1C(=O)NC(=O)N2 Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_a56ffcdaf8d050424e5cd0b2ec67b7c4 MK-547 [M+K]+ 570.1889 248.6 CCCCC1=NC2=C(C=C1)C(C(C2C3=C(C=C(C=C3)OC)CC(C)C(=O)[O-])C(=O)[O-])C4=CC5=C(C=C4)OCO5 None 1 29 TW polyala
1 2 ... 2031 2032 2033 2034 2035 2036 2037 ... 2315 2316