Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_6fc06f9979556a7fe2cc80a29e78de26 Trilostane [M+H]+ 330.2064 182.34 CC12CCC3C(C1CCC2O)CCC45C3(CC(=C(C4O5)O)C#N)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_e70d564c55faaf5ff1de4f4f8fa4936a Trilostane [M+H-H2O]+ 312.1959 176.18 CC12CCC3C(C1CCC2O)CCC45C3(CC(=C(C4O5)O)C#N)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_a48fb73b774bd9267aa54b5430d5f202 Trilostane [M+Na]+ 352.1883 205.85 CC12CCC3C(C1CCC2O)CCC45C3(CC(=C(C4O5)O)C#N)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_71433ace35078cecb5168aa5185705d5 Trilostane [M+Na]+ 352.1883 193.86 CC12CCC3C(C1CCC2O)CCC45C3(CC(=C(C4O5)O)C#N)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_6a6134f8d7ce83165f2353161222d400 Trilostane [M+Na]+ 352.1883 176.94 CC12CCC3C(C1CCC2O)CCC45C3(CC(=C(C4O5)O)C#N)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_7d04d54b83b5fbb3fc13ec67803cce0b Trilostane [M-H]- 328.1918 184.87 CC12CCC3C(C1CCC2O)CCC45C3(CC(=C(C4O5)O)C#N)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_5b177f7833ff0ad268e3d24cbfbbab9c Trilostane [M-H-H2O]- 310.1807 180.56 CC12CCC3C(C1CCC2O)CCC45C3(CC(=C(C4O5)O)C#N)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_4ab692e368a8a4e724ab7bd341b0818a Fenchlorazole-ethyl [M+H]+ 403.9102 179.12 CCOC(=O)C1=NN(C(=N1)C(Cl)(Cl)Cl)C2=C(C=C(C=C2)Cl)Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_3bf357d32facf9415118e31799f2694d Fenchlorazole-ethyl [M+K]+ 441.8661 187.07 CCOC(=O)C1=NN(C(=N1)C(Cl)(Cl)Cl)C2=C(C=C(C=C2)Cl)Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_d0eac3d57486e16c82fc6039a6545689 Fenchlorazole-ethyl [M+Na]+ 425.8922 189.47 CCOC(=O)C1=NN(C(=N1)C(Cl)(Cl)Cl)C2=C(C=C(C=C2)Cl)Cl Organoheterocyclic compounds 1 29 TW polyala
1 2 ... 1979 1980 1981 1982 1983 1984 1985 ... 2315 2316