Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_57faa68242cd311b9b3d72f63af797ec Fosthiazate [M+Na]+ 306.0358 165.15 CCC(C)SP(=O)(N1CCSC1=O)OCC Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_cf0b0890d481a92044b5718a87aace4e Carbofuran [M+Na]+ 244.0944 156.44 CC1(CC2=C(O1)C(=CC=C2)OC(=O)NC)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_2da5e07dece575ae8af9b5eb115aa54e Terbacil [M-H]- 215.0593 148.45 CC1=C(C(=O)N(C(=O)N1)C(C)(C)C)Cl Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_bf10e4c9ca6a57a0696ccccf9052107f Butylate [M+H]+ 218.1573 151.48 CCSC(=O)N(CC(C)C)CC(C)C Organosulfur compounds 1 29 TW polyala
CCSBASE_1e9bbe0fd8b413476be4eac9a2bd1e4e CP-457677 [M+H-H2O]+ 363.1504 190.97 CC(C)(C1=CC=C(C=C1)CNC(=O)C2=C(N=CC=C2)OC3=CC=C(C=C3)F)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_4b09d07500827605dea8b1780dac785b CP-457677 [M+Na]+ 403.1428 189.2 CC(C)(C1=CC=C(C=C1)CNC(=O)C2=C(N=CC=C2)OC3=CC=C(C=C3)F)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_1c73976f9c2b72a741ed4b79982be798 Spiroxamine [M+H]+ 298.2741 180.85 CCCN(CC)CC1COC2(O1)CCC(CC2)C(C)(C)C  Organic oxygen compounds 1 29 TW polyala
CCSBASE_9132e0de404ff0594051c1d8aa78ebdb Dimethyl phthalate [M-H]- 193.0506 143.21 COC(=O)C1=CC=CC=C1C(=O)OC Benzenoids -1 29 TW polyala
CCSBASE_497f8490eb77bed7aa25a1ec5d873612 Ketoconazole [M+H]+ 531.156 213.59 CC(=O)N1CCN(CC1)C2=CC=C(C=C2)OC[C@H]3CO[C@](O3)(CN4C=CN=C4)C5=C(C=C(C=C5)Cl)Cl Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_b461d473a3c45f6120e2c96c5d46bd2e Isoproterenol hydrochloride [M+H]+ 212.1281 149.67 CC(C)NCC(C1=CC(=C(C=C1)O)O)O Benzenoids 1 29 TW polyala
1 2 ... 1977 1978 1979 1980 1981 1982 1983 ... 2315 2316