Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_e791882c81e65c9e734f30f58c846166 1,2,4,5,8-Pentachloronaphthalene [M]+ 297.867738496 148.3 C1=CC(=C2C(=C1Cl)C(=CC(=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_330da645cd6d6d6f7f8882c0ba97d6a1 1,2,3,4,5-Pentachloronaphthalene [M]+ 297.867738496 147.6 C1=CC2=C(C(=C1)Cl)C(=C(C(=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_0a6de070c73f5f16e5291268937b1108 1,2,3,4,6,7-Hexachloronaphthalene [M]+ 331.828766144 155.4 C1=C2C(=CC(=C1Cl)Cl)C(=C(C(=C2Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_76db92da47740182ae7f80d62209c8ab 1,2,3,5,6,8-Hexachloronaphthalene [M]+ 331.828766144 154.5 C1=C2C(=C(C(=C1Cl)Cl)Cl)C(=CC(=C2Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_d4006764fe7ed09de4f38506f4eec6da 1,2,3,5,7,8-Hexachloronaphthalene [M]+ 331.828766144 154.5 C1=C2C(=CC(=C(C2=C(C(=C1Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_30477d98e4bfab5a06390c202baa3573 1,2,4,5,6,8-Hexachloronaphthalene [M]+ 331.828766144 153.7 C1=C(C2=C(C(=CC(=C2Cl)Cl)Cl)C(=C1Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_25c91740c3933e6be68600886c7edaac 1,2,3,4,5,6-Hexachloronaphthalene [M]+ 331.828766144 153.4 C1=CC(=C(C2=C1C(=C(C(=C2Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_9f39a3b06763f74f63570cd81ebcd62e 1,2,3,4,5,8-Hexachloronaphthalene [M]+ 331.828766144 153.3 C1=CC(=C2C(=C1Cl)C(=C(C(=C2Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_ad5ce6b3255f15136c80baf4b63c32d2 1,2,3,6,7,8-Hexachloronaphthalene [M]+ 331.828766144 154.5 C1=C2C=C(C(=C(C2=C(C(=C1Cl)Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
CCSBASE_ab7987ab5012d3b8d732c4a7aea6f2ba 1,2,3,4,5,6,8-Heptachloronaphthalene [M]+ 365.789793792 158.8 C1=C(C2=C(C(=C1Cl)Cl)C(=C(C(=C2Cl)Cl)Cl)Cl)Cl Benzenoids 1 28 TIMS calibration with PAHs
1 2 ... 1956 1957 1958 1959 1960 1961 1962 ... 2315 2316