Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_a68af9d056c75168372c9199485add3a 4-Amino-2,5-dimethoxy-N-phenylbenzenesulfonamide [M+Na]+ 331.0723 176.44 COC1=CC(=C(C=C1N)OC)S(=O)(=O)NC2=CC=CC=C2 Benzenoids 1 29 TW polyala
CCSBASE_81b59bf72fc4c8c9d3e12db6163d18f4 2-Piperidineethanol [M+H]+ 130.1226 127.27 C1CCNC(C1)CCO Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_468925cad5b3c17abbf379d086cd2473 1-Dodecyl-2-pyrrolidinone [M+H]+ 254.2478 179.82 CCCCCCCCCCCCN1CCCC1=O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_dcaae0278b681044ad08c72383b1923f 2-[{2-[2-(Dimethylamino)ethoxy]ethyl}(methyl)amino]ethanol [M+H]+ 191.1754 140.51 CN(C)CCOCCN(C)CCO Organic nitrogen compounds 1 29 TW polyala
CCSBASE_d2fa205a45866f2b7fa847c6f35b3283 Cypermethrin [M+Na]+ 438.0634 187.6 CC1(C(C1C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3)C=C(Cl)Cl)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_0af105637391fa983a63c81711ec4bd6 Cypermethrin [M+Na]+ 438.0634 197.6 CC1(C(C1C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3)C=C(Cl)Cl)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_a765dd14aab9b7b74dc55372e1cbb157 CP-642931 [M+H]+ 344.2194 186.94 CC1CN(CC(N1C2=NC(=NC=C2)C(C)O)C)C3=NC(=NC(=N3)C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_5ee26b5485dde98e27c8e4b628b93098 CP-642931 [M+H-H2O]+ 326.2089 181.64 CC1CN(CC(N1C2=NC(=NC=C2)C(C)O)C)C3=NC(=NC(=N3)C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_4f9be2494d8ab9e6b90910b47733714e 3-Hydroxy-2-naphthanilide [M+H]+ 264.1019 158.93 C1=CC=C(C=C1)NC(=O)C2=CC3=CC=CC=C3C=C2O Benzenoids 1 29 TW polyala
CCSBASE_fee204c227d588b6ea188166470ab5b2 3-Hydroxy-2-naphthanilide [M+H-H2O]+ 246.0914 156.71 C1=CC=C(C=C1)NC(=O)C2=CC3=CC=CC=C3C=C2O Benzenoids 1 29 TW polyala
1 2 ... 2282 2283 2284 2285 2286 2287 2288 ... 2315 2316