Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_48cef8b43749e3b4376bd8a0c0b109bf 1-[(1-Butoxy-2-propanyl)oxy]-2-propanol [M+Na]+ 213.1461 150.55 CCCCOCC(C)OCC(C)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_0867743b0309218c4b1799ab2317a8a8 Iodosulfuron-methyl-sodium [M+H]+ 507.9783 195.8 CC1=NC(=NC(=N1)OC)NC(=O)[N-]S(=O)(=O)C2=C(C=CC(=C2)I)C(=O)OC Benzenoids 1 29 TW polyala
CCSBASE_5a26355f7504f85aae0ba5fdfc785605 Iodosulfuron-methyl-sodium [M+Na]+ 529.9602 196.86 CC1=NC(=NC(=N1)OC)NC(=O)[N-]S(=O)(=O)C2=C(C=CC(=C2)I)C(=O)OC Benzenoids 1 29 TW polyala
CCSBASE_d8df735cf3b17e5597e3242eea9f5c3d 4-Methylphthalic anhydride [M+H]+ 163.039 125.9 CC1=CC2=C(C=C1)C(=O)OC2=O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_dcb367dc82735d73fec5e6766823145b 4-Ethyl-2-methoxyphenol [M+FA-H]- 197.0819 148.61 CCC1=CC(=C(C=C1)O)OC Benzenoids -1 29 TW polyala
CCSBASE_b8253c7f6ef4a02a67ed5d24f152a553 Procarbazine [M-H]- 220.1455 159.06 CC(C)NC(=O)C1=CC=C(C=C1)CNNC Benzenoids -1 29 TW polyala
CCSBASE_aa0ffda06f6486afee6b43b8d24742ab Mesotrione [M+H]+ 340.0485 174.14 CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)[N+](=O)[O-] Organic oxygen compounds 1 29 TW polyala
CCSBASE_82dee410914e2b14c983fc07b577c312 Mesotrione [M-H-H2O]- 320.0229 172.44 CS(=O)(=O)C1=CC(=C(C=C1)C(=O)C2C(=O)CCCC2=O)[N+](=O)[O-] Organic oxygen compounds -1 29 TW polyala
CCSBASE_2c33bf017ba85ccda9f50a97259812ad 1,7-Dimethylxanthine [M+H]+ 181.072 132.89 CN1C=NC2=C1C(=O)N(C(=O)N2)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_d20be4203516f3e53a33db1862dd9fee Igepal CO-890 [M+H-H2O]+ 291.2319 178.39 CC(C)CCCCCCC1=CC=C(C=C1)OCCOCCO Benzenoids 1 29 TW polyala
1 2 ... 2223 2224 2225 2226 2227 2228 2229 ... 2315 2316