Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_2d98fb7446b3b1164e3dd156dada8911 2,3-Dihydro-4-methyl-1-phenyl-1H-phosphole 1-oxide [M+H]+ 193.0777 140.68 CC1=CP(=O)(CC1)C2=CC=CC=C2  Benzenoids 1 29 TW polyala
CCSBASE_5505e5c4c66c30dab2ed7eb660d4a1ec 2,3-Dihydro-4-methyl-1-phenyl-1H-phosphole 1-oxide [M+Na]+ 215.0596 158.62 CC1=CP(=O)(CC1)C2=CC=CC=C2  Benzenoids 1 29 TW polyala
CCSBASE_004f0a0bdcbe8acb10606976484efd70 2,3-Dihydroxynaphthalene [M-H]- 159.0451 133.2 C1=CC=C2C=C(C(=CC2=C1)O)O Benzenoids -1 29 TW polyala
CCSBASE_3b9730083020a318be568ce4fc81753d 2,3-Dihydroxynaphthalene [M-H-H2O]- 141.034 134.65 C1=CC=C2C=C(C(=CC2=C1)O)O Benzenoids -1 29 TW polyala
CCSBASE_b6723827f1be628d00dda73d6a4ef5ab 2,4-Dichloro-N-(naphthalene-2-yl)benzamide [M+H]+ 316.029 168.61 C1=CC=C2C=C(C=CC2=C1)NC(=O)C3=C(C=C(C=C3)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_6017a84bc58ea5856002de6b062678f4 2,4-Dichloro-N-(naphthalene-2-yl)benzamide [M+H-H2O]+ 298.0185 165.46 C1=CC=C2C=C(C=CC2=C1)NC(=O)C3=C(C=C(C=C3)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_809fee324cbcd447bd3fa31199b5ba0d 2,4-Dichloro-N-(naphthalene-2-yl)benzamide [M+Na]+ 338.011 181.08 C1=CC=C2C=C(C=CC2=C1)NC(=O)C3=C(C=C(C=C3)Cl)Cl Benzenoids 1 29 TW polyala
CCSBASE_6d4aeedc6ca9e6c3c62ec8d8a8d02836 2,4-Dihydroxybenzaldehyde [M-H]- 137.0244 127.42 C1=CC(=C(C=C1O)O)C=O Organic oxygen compounds -1 29 TW polyala
CCSBASE_21bdebbc7da429b40d8b9f7153a8561f 2,5-Dimethylbenzenesulfonic acid [M+Na]+ 209.0243 142.1 CC1=CC(=C(C=C1)C)S(=O)(=O)O Benzenoids 1 29 TW polyala
CCSBASE_62f7332e2e30f012f89512f9834520ba 2,7-Acetylaminofluorene [M+H]+ 281.1285 172.02 CC(=O)NC1=CC2=C(C=C1)C3=C(C2)C=C(C=C3)NC(=O)C  Benzenoids 1 29 TW polyala
1 2 ... 2159 2160 2161 2162 2163 2164 2165 ... 2315 2316