Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_777f6f313c61339f096bae81db4a0488 Dehydrothio-4-toluidine [M+H]+ 241.0794 151.71 CC1=CC2=C(C=C1)N=C(S2)C3=CC=C(C=C3)N Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_10bb92cdbcf595ff59560c22fa76e5e8 Dehydrothio-4-toluidine [M-H]- 239.0648 155.47 CC1=CC2=C(C=C1)N=C(S2)C3=CC=C(C=C3)N Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_8717d6b7f629ea9fa4349b30c8fd9e35 SSR69071 [M+H]+ 557.2064 224.99 CC(C)C1=C2C(=CC(=C1)OC)S(=O)(=O)N(C2=O)COC3=CC(=O)N4C=CC=C(C4=N3)OCCN5CCCCC5 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_2dda27b466129e17f9819a157234d649 SSR69071 [M+Na]+ 579.1884 230.08 CC(C)C1=C2C(=CC(=C1)OC)S(=O)(=O)N(C2=O)COC3=CC(=O)N4C=CC=C(C4=N3)OCCN5CCCCC5 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_d615ddc5daaaefe775ddce0c152fb2e1 Decyl beta-D-glucopyranoside [M+FA-H]- 365.2181 199.1 CCCCCCCCCCOC1C(C(C(C(O1)CO)O)O)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_77a129512cad1be2c30f8420e692fc3a Decyl beta-D-glucopyranoside [M+Na]+ 343.2091 188.03 CCCCCCCCCCOC1C(C(C(C(O1)CO)O)O)O Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_9880bb6e8aebb908b53ef029478cfa7c Octhilinone [M+H]+ 214.126 156.41 CCCCCCCCN1C(=O)C=CS1 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_aa132c3bbd38968a1c3e06c9b2593b15 Octhilinone [M+Na]+ 236.108 164.91 CCCCCCCCN1C(=O)C=CS1 Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_f85aec4d9ef83d494a2672222d1bfa5d Benzenecarboximidamide, monohydrochloride [M+Cl]- 155.0381 134.01 C1=CC=C(C=C1)C(=N)N Benzenoids -1 29 TW polyala
CCSBASE_06b1506f4d53ac082cc21c127f3b3879 Tazobactam sodium [M+H]+ 301.0601 158.99 CC1(C(N2C(S1(=O)=O)CC2=O)C(=O)[O-])CN3C=CN=N3 Organic acids and derivatives 1 29 TW polyala
1 2 ... 2137 2138 2139 2140 2141 2142 2143 ... 2315 2316