Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_21db250f7fbcc1e05b2d3806e818d393 2-Ethylhexyl salicylate [M-H]- 249.1496 165.13 CCCCC(CC)COC(=O)C1=CC=CC=C1O None -1 29 TW polyala
CCSBASE_6b30f2bdeb142a42d5de1248bab65d47 4-Methoxybenzyl formate [M+FA-H]- 211.0612 146.99 COC1=CC=C(C=C1)COC=O None -1 29 TW polyala
CCSBASE_79681b0dc286f9615a55cdda9994b5dd 2-Isopropoxyphenol [M-H]- 151.0764 136.94 CC(C)OC1=CC=CC=C1O None -1 29 TW polyala
CCSBASE_7e7e8e7853960463d873ab62f3a4b7e9 C.I. Acid Yellow 34, monosodium salt [M+H]+ 393.0419 191.06 CC1=NN(C(=O)C1N=NC2=CC=CC=C2)C3=C(C=CC(=C3)S(=O)(=O)[O-])Cl None 1 29 TW polyala
CCSBASE_56ffba8fb8ead2e336ef5c1ad2bd9466 C.I. Acid Yellow 34, monosodium salt [M+K]+ 430.9978 198.03 CC1=NN(C(=O)C1N=NC2=CC=CC=C2)C3=C(C=CC(=C3)S(=O)(=O)[O-])Cl None 1 29 TW polyala
CCSBASE_a4a0fa812eccb31fd0b973bbeaedb8fe C.I. Acid Yellow 34, monosodium salt [M+Na]+ 415.0238 196.18 CC1=NN(C(=O)C1N=NC2=CC=CC=C2)C3=C(C=CC(=C3)S(=O)(=O)[O-])Cl None 1 29 TW polyala
CCSBASE_215b4f2b7dca444cbe270c863af678aa C.I. Acid Yellow 34, monosodium salt [M-H]- 391.0273 201.92 CC1=NN(C(=O)C1N=NC2=CC=CC=C2)C3=C(C=CC(=C3)S(=O)(=O)[O-])Cl None -1 29 TW polyala
CCSBASE_cd093389ea29426c1dce465f96acf72b 1,1'-Disulfanediyldiazepan-2-one [M+K]+ 327.0598 166.3 C1CCC(=O)N(CC1)SSN2CCCCCC2=O   None 1 29 TW polyala
CCSBASE_210c97c9e0e8ce8b3a513b0f4a366039 Nordihydroguaiaretic acid [M-H]- 301.1445 168.73 CC(CC1=CC(=C(C=C1)O)O)C(C)CC2=CC(=C(C=C2)O)O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_7fe43ab9359fce20fefd1d16450974db Inosine 5'-monophosphate disodium salt hydrate [M-H]- 347.0398 173.22 C1=NC2=C(C(=O)N1)N=CN2C3C(C(C(O3)COP(=O)([O-])[O-])O)O Lignans, neolignans and related compounds -1 29 TW polyala
1 2 ... 2112 2113 2114 2115 2116 2117 2118 ... 2315 2316