Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_cf5a62c69c964b839917db178a8ca802 Warfarin [M+H]+ 309.1121 166.67 CC(=O)CC(C1=CC=CC=C1)C2=C(C3=CC=CC=C3OC2=O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_32f10b1186f1cbbce63f603a205d687a Warfarin [M+H-H2O]+ 291.1016 164.51 CC(=O)CC(C1=CC=CC=C1)C2=C(C3=CC=CC=C3OC2=O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_0490f674c254a2e3f3bc71b6fd94e898 Warfarin [M+K]+ 347.068 178.85 CC(=O)CC(C1=CC=CC=C1)C2=C(C3=CC=CC=C3OC2=O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_400dbb75a3657d1ad7e92ad018248d05 Warfarin [M+Na]+ 331.0941 175.74 CC(=O)CC(C1=CC=CC=C1)C2=C(C3=CC=CC=C3OC2=O)O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_e128d3df0d0e2eeb9032556ec46f0959 Warfarin [M-H]- 307.0976 172.47 CC(=O)CC(C1=CC=CC=C1)C2=C(C3=CC=CC=C3OC2=O)O Phenylpropanoids and polyketides -1 29 TW polyala
CCSBASE_4a15ab3c280739f314b0a7da7b118222 Flurandrenolide [M+Cl]- 471.1955 206.12 CC1(OC2CC3C4CC(C5=CC(=O)CCC5(C4C(CC3(C2(O1)C(=O)CO)C)O)C)F)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_5d2e78bf56446d9d67374a7b2d2669cb Flurandrenolide [M+FA-H]- 481.2243 208.09 CC1(OC2CC3C4CC(C5=CC(=O)CCC5(C4C(CC3(C2(O1)C(=O)CO)C)O)C)F)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_e1aca05fda22002c11b8715710fc8275 Flurandrenolide [M+H]+ 437.2334 198.9 CC1(OC2CC3C4CC(C5=CC(=O)CCC5(C4C(CC3(C2(O1)C(=O)CO)C)O)C)F)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_6c6ebbc63d68e97cd785e43c4daca497 Flurandrenolide [M+Na]+ 459.2153 193.59 CC1(OC2CC3C4CC(C5=CC(=O)CCC5(C4C(CC3(C2(O1)C(=O)CO)C)O)C)F)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_2d11077c4da59a402e3ca6ce02b70ae8 Flurandrenolide [M+Na]+ 459.2153 224.36 CC1(OC2CC3C4CC(C5=CC(=O)CCC5(C4C(CC3(C2(O1)C(=O)CO)C)O)C)F)C Lipids and lipid-like molecules 1 29 TW polyala
1 2 ... 2095 2096 2097 2098 2099 2100 2101 ... 2315 2316