Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_534c4f0f6f137d720747a09a507da4d7 2-Cyclohexylethyl acetate [M+FA-H]- 215.1289 151.14 CC(=O)OCCC1CCCCC1 Organic acids and derivatives -1 29 TW polyala
CCSBASE_927cbb91b15f381c635f6c6dcc22b37c 2-Cyclohexylethyl acetate [M+H]+ 171.138 141.64 CC(=O)OCCC1CCCCC1 Organic acids and derivatives 1 29 TW polyala
CCSBASE_c505e67922ae607c37158ea40f18d0d7 Terbucarb [M+Na]+ 300.1934 174.82 CC1=CC(=C(C(=C1)C(C)(C)C)OC(=O)NC)C(C)(C)C Benzenoids 1 29 TW polyala
CCSBASE_8f0c94ffb4a16ab4664b1ad972674ba1 Cyproterone acetate [M+Na]+ 439.1647 213.13 CC(=O)C1(CCC2C1(CCC3C2C=C(C4=CC(=O)C5CC5C34C)Cl)C)OC(=O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_a3c3d6acb6ab888ef982242625ac6600 Cyproterone acetate [M+Na]+ 439.1647 224.08 CC(=O)C1(CCC2C1(CCC3C2C=C(C4=CC(=O)C5CC5C34C)Cl)C)OC(=O)C Lipids and lipid-like molecules 1 29 TW polyala
CCSBASE_1898718ff559bdc47699dba9c9fa5f37 2-Amino-5-(5-nitro-2-furyl)-1,3,4-oxadiazole [M+H]+ 197.0305 140.01 C1=C(OC(=C1)[N+](=O)[O-])C2=NN=C(O2)N Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_9461d97b3a471d0a7721ef997e37979e 2-Amino-5-(5-nitro-2-furyl)-1,3,4-oxadiazole [M-H]- 195.016 137.07 C1=C(OC(=C1)[N+](=O)[O-])C2=NN=C(O2)N Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_d77e8f17d59291045fdf227215f577a9 Probenecid [M+H]+ 286.1108 161.29 CCCN(CCC)S(=O)(=O)C1=CC=C(C=C1)C(=O)O Benzenoids 1 29 TW polyala
CCSBASE_a6c0952aa7376245b166a596f0473067 Probenecid [M+Na]+ 308.0927 179.56 CCCN(CCC)S(=O)(=O)C1=CC=C(C=C1)C(=O)O Benzenoids 1 29 TW polyala
CCSBASE_1c92ed06c2787a9278d74259e8a548dd Probenecid [M-H]- 284.0962 172.27 CCCN(CCC)S(=O)(=O)C1=CC=C(C=C1)C(=O)O Benzenoids -1 29 TW polyala
1 2 ... 2087 2088 2089 2090 2091 2092 2093 ... 2315 2316