Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_c7e6de7e066b46d5f57abf142ae6e8a6 Damascenone [M+H-H2O]+ 173.1325 139.32 CC=CC(=O)C1=C(C=CCC1(C)C)C Organic oxygen compounds 1 29 TW polyala
CCSBASE_dd1c874d6ff879b527f4f6e62a3d3002 5-Methyl-2-furancarboxylic acid [M+Na]+ 149.0209 121.62 CC1=CC=C(O1)C(=O)O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_3bdf1ab6009a8d5c21feee84e6ea53d7 2,2-Dimethoxy-1,2-diphenylethanone [M+Na]+ 279.0992 167.57 COC(C1=CC=CC=C1)(C(=O)C2=CC=CC=C2)OC Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_5a4311436d560bb6d6e39a82ad307ad3 Bis[4-(glycidyloxy)phenyl]methane [M+H]+ 313.1434 177.45 C1C(O1)COC2=CC=C(C=C2)CC3=CC=C(C=C3)OCC4CO4 Benzenoids 1 29 TW polyala
CCSBASE_b69b7c7e85ab383e6e28547e3e451a11 Bis[4-(glycidyloxy)phenyl]methane [M+H-H2O]+ 295.1329 166.79 C1C(O1)COC2=CC=C(C=C2)CC3=CC=C(C=C3)OCC4CO4 Benzenoids 1 29 TW polyala
CCSBASE_d3dc49f6106c7b4591c9967dc5ee6a13 Bis[4-(glycidyloxy)phenyl]methane [M+K]+ 351.0993 171.45 C1C(O1)COC2=CC=C(C=C2)CC3=CC=C(C=C3)OCC4CO4 Benzenoids 1 29 TW polyala
CCSBASE_ddb93cdaf0d1d8600f97f09b14ead9f8 Bis[4-(glycidyloxy)phenyl]methane [M+Na]+ 335.1254 168.61 C1C(O1)COC2=CC=C(C=C2)CC3=CC=C(C=C3)OCC4CO4 Benzenoids 1 29 TW polyala
CCSBASE_44a1a910c5c725dad17a23054ce23ebc Fenchyl acetate [M+FA-H]- 241.1445 159.26 CC(=O)OC1C(C2CCC1(C2)C)(C)C Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_395b41307f6c608d2bdd922c90d09952 1,1,3,3-Tetrabutylurea [M+H]+ 285.29 190.98 CCCCN(CCCC)C(=O)N(CCCC)CCCC Organic acids and derivatives 1 29 TW polyala
CCSBASE_707b2e19918913862c2b68b168104c8e 1,1,3,3-Tetrabutylurea [M+H]+ 285.29 178.91 CCCCN(CCCC)C(=O)N(CCCC)CCCC Organic acids and derivatives 1 29 TW polyala
1 2 ... 2079 2080 2081 2082 2083 2084 2085 ... 2315 2316