Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_17c26338ca41cb0fff598bc24e0f9634 Butyl 4-oxopentanoate [M-H]- 171.1027 145.57 CCCCOC(=O)CCC(=O)C Organic acids and derivatives -1 29 TW polyala
CCSBASE_fbedbcec98ff967c6ced49b926df866f 4-Methyl-1-(propan-2-yl)cyclohex-3-en-1-ol [M+FA-H]- 199.134 152.14 CC1=CCC(CC1)(C(C)C)O Lipids and lipid-like molecules -1 29 TW polyala
CCSBASE_8b9ccbf8f20e857279821c082158a3a9 Tris(2-hydroxyethyl) isocyanurate [M+H]+ 262.1034 152.24 C(CO)N1C(=O)N(C(=O)N(C1=O)CCO)CCO Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_c33d2dce4e2f9dc22b00f278d7b4ab56 Tris(2-hydroxyethyl) isocyanurate [M+H-H2O]+ 244.0929 147.09 C(CO)N1C(=O)N(C(=O)N(C1=O)CCO)CCO Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_7791e205cf7113f15e489f325ff29686 Tris(2-hydroxyethyl) isocyanurate [M+Na]+ 284.0853 157.17 C(CO)N1C(=O)N(C(=O)N(C1=O)CCO)CCO Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_5a724c0f7d20796dfb718a0b1e51cb8e (1R,5R)-3,3,5-trimethylcyclohexanol [M+FA-H]- 187.134 148.62 CC1CC(CC(C1)(C)C)O Organic oxygen compounds -1 29 TW polyala
CCSBASE_ac4696562ca0f888eeebbca7dbb51081 Tripropylene glycol butyl ether [M+K]+ 287.162 166.92 CCCCOC(CC)OC(C)COC(CC)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_5c1f61b31ce0ebbe989377e3890f8580 Tripropylene glycol butyl ether [M+Na]+ 271.188 163.75 CCCCOC(CC)OC(C)COC(CC)O Organic oxygen compounds 1 29 TW polyala
CCSBASE_7ccca2e00ebceaedd75e66fe94c5429b Eosin [M-H]- 642.7032 206.02 C1=CC=C2C(=C1)C(=O)OC23C4=CC(=C(C(=C4OC5=C(C(=C(C=C35)Br)[O-])Br)Br)[O-])Br Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_ddc29b211b6d414c14874bbbd5864a58 4,4'-Methylenebis(2,6-diethylaniline) [M+H]+ 311.2482 192.28 CCC1=CC(=CC(=C1N)CC)CC2=CC(=C(C(=C2)CC)N)CC Benzenoids 1 29 TW polyala
1 2 ... 2073 2074 2075 2076 2077 2078 2079 ... 2315 2316