Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_c46bc4ec7a1a88643840eaa1af2da2e6 Methomyl [M+H]+ 163.0536 123.57 CC(=NOC(=O)NC)SC Organic acids and derivatives 1 29 TW polyala
CCSBASE_638ba9add769906fceb3b206d15c8ea3 DEET [M+H]+ 192.1383 144.48 CCN(CC)C(=O)C1=CC=CC(=C1)C Benzenoids 1 29 TW polyala
CCSBASE_e558a06da9a99fb6b80ae5d72dd097ec Triclosan [M-H]- 286.9439 160.17 C1=CC(=C(C=C1Cl)O)OC2=C(C=C(C=C2)Cl)Cl Benzenoids -1 29 TW polyala
CCSBASE_9ed4cdb3c8e2b73eb37b9fdd1c41d4b5 2-(Phenylmethylene)octanal [M+H]+ 217.1587 152.02 CCCCCC/C(=C\C1=CC=CC=C1)/C=O Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_d1bed0ee2c3065412b90bbd8688e30d2 4-Hydroxytamoxifen [M+H]+ 388.2271 203.38 CCC(=C(C1=CC=C(C=C1)O)C2=CC=C(C=C2)OCCN(C)C)C3=CC=CC=C3 Phenylpropanoids and polyketides 1 29 TW polyala
CCSBASE_48d3e5136fcada4c3ec43d7e40220a5b PharmaGSID_48172 [M+H]+ 437.1642 210.75 C1CCCN(CC1)CC2=CC=C(S2)C3=NC(=NO3)CCN4C(=O)C5=CC=CC=C5C4=O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_08a88381fc6f33c0e8809ae98ff2db12 PharmaGSID_48172 [M+Na]+ 459.1461 212.63 C1CCCN(CC1)CC2=CC=C(S2)C3=NC(=NO3)CCN4C(=O)C5=CC=CC=C5C4=O Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_999b5840ae59fa927f3a9885a7941f55 Didecyldimethylammonium chloride [M]+ 326.3781 210.57 CCCCCCCCCC[N+](C)(C)CCCCCCCCCC Organic nitrogen compounds 1 29 TW polyala
CCSBASE_63908157b2b6029799a4a3de18556450 Fabesetron hydrochloride [M+H]+ 294.1601 172.88 CC1=C2CCC(C(=O)N2C3=CC=CC=C13)CC4=C(NC=N4)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_b8f0c7461d0834514b1d1f39d763274b Fabesetron hydrochloride [M-H-H2O]- 274.1344 164.7 CC1=C2CCC(C(=O)N2C3=CC=CC=C13)CC4=C(NC=N4)C Organoheterocyclic compounds -1 29 TW polyala
1 2 ... 1999 2000 2001 2002 2003 2004 2005 ... 2315 2316