Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_2a698c9baee2c78caf8b677c6668e056 Ethylparaben [M-H]- 165.0557 139.58 CCOC(=O)C1=CC=C(C=C1)O Benzenoids -1 29 TW polyala
CCSBASE_16120968e1f064b8494cbcdd9af55b11 Tri-m-tolyl phosphate [M+H]+ 369.125 187.4 CC1=CC(=CC=C1)OP(=O)(OC2=CC=CC(=C2)C)OC3=CC=CC(=C3)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_20d658ac8c6d6d86552eb797ac5c344d Tri-m-tolyl phosphate [M+H-H2O]+ 351.1145 178.08 CC1=CC(=CC=C1)OP(=O)(OC2=CC=CC(=C2)C)OC3=CC=CC(=C3)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_c816a890df1faddb7dd300ab415dd298 Tri-m-tolyl phosphate [M+Na]+ 391.107 198.1 CC1=CC(=CC=C1)OP(=O)(OC2=CC=CC(=C2)C)OC3=CC=CC(=C3)C Organic acids and derivatives 1 29 TW polyala
CCSBASE_bc774c5912e6b64b0d6de43a0d7a3f9e 2-Methoxy-5-methylaniline [M+H]+ 138.0913 130.35 CC1=CC(=C(C=C1)OC)N Benzenoids 1 29 TW polyala
CCSBASE_67619f50c8fd77e27175e1b0bd578a9f Parinol [M+H]+ 330.0447 178.75 C1=CC(=CN=C1)C(C2=CC=C(C=C2)Cl)(C3=CC=C(C=C3)Cl)O Benzenoids 1 29 TW polyala
CCSBASE_9377c06e5500c1aea85fdc329a577f84 Parinol [M+H-H2O]+ 312.0342 170.32 C1=CC(=CN=C1)C(C2=CC=C(C=C2)Cl)(C3=CC=C(C=C3)Cl)O Benzenoids 1 29 TW polyala
CCSBASE_1fa0421afde0dac0dcb0988793e9fb8b Amiloride hydrochloride [M+H]+ 230.0552 146.21 C1(=C(N=C(C(=N1)Cl)N)N)C(=O)N=C(N)N Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_f335a909e3a575a36a6795d9e9801561 2,5-Dimethyl-1,4-dithiane-2,5-diol [M+FA-H]- 225.0261 152.12 CC1(CSC(CS1)(C)O)O Organoheterocyclic compounds -1 29 TW polyala
CCSBASE_cb1c515ce7811a93859d1761710301f3 4-tert-Butylbenzoic acid [M+H-H2O]+ 161.0962 134.05 CC(C)(C)C1=CC=C(C=C1)C(=O)O Benzenoids 1 29 TW polyala
1 2 ... 1994 1995 1996 1997 1998 1999 2000 ... 2315 2316