Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_d49b6d317e7a770f1c49fb2f03fffba3 Buprofezin [M+H]+ 306.1635 172.96 CC(C)N1C(=NC(C)(C)C)SCN(C1=O)C2=CC=CC=C2  Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_f777980765db638f81b2a1556826b235 Buprofezin [M+Na]+ 328.1454 184.76 CC(C)N1C(=NC(C)(C)C)SCN(C1=O)C2=CC=CC=C2  Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_0e02b7884cd76cba65581439d466b905 Diatrizoate sodium [M+H]+ 614.7769 175.09 CC(=O)NC1=C(C(=C(C(=C1I)C(=O)[O-])I)NC(=O)C)I Benzenoids 1 29 TW polyala
CCSBASE_f8163bb368431789271fcba95c532030 Diatrizoate sodium [M+K]+ 652.7328 179.0 CC(=O)NC1=C(C(=C(C(=C1I)C(=O)[O-])I)NC(=O)C)I Benzenoids 1 29 TW polyala
CCSBASE_a6953dea7e14f724e5e69a8bb19671a4 Diatrizoate sodium [M+Na]+ 636.7589 178.68 CC(=O)NC1=C(C(=C(C(=C1I)C(=O)[O-])I)NC(=O)C)I Benzenoids 1 29 TW polyala
CCSBASE_3ef16ecf8e0da7123b876e995bdd17d2 Diatrizoate sodium [M-H-H2O]- 594.7513 177.1 CC(=O)NC1=C(C(=C(C(=C1I)C(=O)[O-])I)NC(=O)C)I Benzenoids -1 29 TW polyala
CCSBASE_67be7caffec5df9d23fb0afdf207f401 Ametryn [M+H]+ 228.1277 155.91 CCNC1=NC(=NC(=N1)SC)NC(C)C Organoheterocyclic compounds 1 29 TW polyala
CCSBASE_23e7c6ed467f1e6ee4691f7df78f3176 4-(1,1,3,3-Tetramethylbutyl)phenol [M+FA-H]- 251.1653 165.17 CC(C)(C)CC(C)(C)C1=CC=C(C=C1)O Benzenoids -1 29 TW polyala
CCSBASE_9662bfeec020ac3dd23748554da028fc 4-(1,1,3,3-Tetramethylbutyl)phenol [M-H]- 205.1598 159.51 CC(C)(C)CC(C)(C)C1=CC=C(C=C1)O Benzenoids -1 29 TW polyala
CCSBASE_8cb0075b7659591d0e483055de4f0ade Imazamox [M+H]+ 306.1448 171.72 CC(C)C1(C(=O)NC(=N1)C2=C(C=C(C=N2)COC)C(=O)O)C Organic acids and derivatives 1 29 TW polyala
1 2 ... 1986 1987 1988 1989 1990 1991 1992 ... 2315 2316