Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_54bf0558c0d79370746db3de9a8f4fb4 RBM14C12 [M+Na]+ 484.2669438 219.766666667 CCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_574156e7e76225f719cd20b81a2ca939 RBM14C12 [M+H]+ 462.28499987 221.733333333 CCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_67277afc0c3489c70303eb6b7d0fc9c0 RBM14C12 [M+H-H2O]+ 444.2744292 222.0 CCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_7bcfb1fd2aee61b404f1a4842129b62a RBM14C12 [M+Cl]- 496.247125 222.066666667 CCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_73697b352eba61271af0d41c0ef19ed1 RBM14C12 [M+HCOO]- 506.2759266 225.133333333 CCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_6044672bf0ff78eabbc67430a5e292dc RBM14C16 [M+Na]+ 540.3295406 232.433333333 CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_09afa70843b6600a3c17bc6a697461ba RBM14C16 [M+H]+ 518.34759667 236.766666667 CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_7713c585fbb9b48baa9cd9796b41f435 RBM14C16 [M-H]- 516.3330442 242.566666667 CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_8e129e0f44ac8fdbc69cad37a3844035 RBM14C16 [M+Cl]- 552.3097218 237.3 CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_14289bb8a548c493398110366ccf2e90 RBM14C16 [M+HCOO]- 562.3385234 241.933333333 CCCCCCCCCCCCCCCC(=O)N[C@@H](CO)[C@@H](CCOC1=CC2=C(C=C1)C=CC(=O)O2)O Phenylpropanoids and polyketides -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
1 2 ... 1925 1926 1927 1928 1929 1930 1931 ... 2315 2316