Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_49587040f3e932fa878f818a65a06177 C20:4 anandamide (AEA) [M+HCOO]- 392.2806174 201.6 CCCCC/C=C\C/C=C\C/C=C\C/C=C\CCCC(=O)NCCO Organic nitrogen compounds -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_77f195fd5b7b1763ccbf665b43f67147 C20:4 anandamide phosphate [M-H]- 426.2414708 202.0 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_8c73700ee675c9387be404ae1dd0d92e C22 Ceramide (d14:1/22:0) [M+Na]+ 588.532586 262.7 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_ee39886986aaeed02ff641c30c5b72e3 C22 Ceramide (d14:1/22:0) [M+H]+ 566.55064207 261.166666667 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_1894c3f182f50ad7ef5b37bae289a47d C22 Ceramide (d14:1/22:0) [M+Cl]- 600.5127672 256.766666667 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_2474576091b56cac936fe9e6eeb7f817 C22 Ceramide (d14:1/22:0) [M+HCOO]- 610.5415688 263.3 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_f0e82a71ec69085c1f61e0274a5f2c91 C22 Ceramide (d18:1/22:0) [M+Na]+ 644.5951828 272.025 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_dd0ab579bb9fc430d8f3b60f89795c13 C22 Ceramide (d18:1/22:0) [M+H]+ 622.6132384 275.475 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_5c4a06861a7792c26eb4989969c8617c C22 Ceramide (d18:1/22:0) [M+H-H2O]+ 604.6026742 275.54 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_029a83e1220770caf24aee9b227da6b1 C22 Ceramide (d18:1/22:0) [M+Cl]- 656.575364 269.62 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
1 2 ... 1871 1872 1873 1874 1875 1876 1877 ... 2315 2316