Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_dc0c7a6d3d1d2ef048efa108d13b7d9a C16-Urea-Ceramide [M+H]+ 567.54589147 263.966666667 CCCCCCCCCCCCCCCCNC(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O Organic acids and derivatives 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_a6347b7a19a790416dc37c9ab68e3948 C16-Urea-Ceramide [M+H-H2O]+ 549.5353208 263.666666667 CCCCCCCCCCCCCCCCNC(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O Organic acids and derivatives 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_c5c27ab0d6124d65ccfab50acf975ef8 C16-Urea-Ceramide [M+Cl]- 601.5080166 256.866666667 CCCCCCCCCCCCCCCCNC(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O Organic acids and derivatives -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_8aa7f14b43ff833dcddd679e40908c13 C16-Urea-Ceramide [M+HCOO]- 611.5368182 264.5 CCCCCCCCCCCCCCCCNC(=O)N[C@@H](CO)[C@@H](/C=C/CCCCCCCCCCCCC)O Organic acids and derivatives -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_87c799393d09a8b6ed5e0ec739b5927f C17 Ceramide (d18:1/17:0) [M+Na]+ 574.5169368 255.466666667 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_d4986af18e5413d5f9009c83196b383f C17 Ceramide (d18:1/17:0) [M+H]+ 552.53499287 260.7 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_53e683060264aaaffd4fd22c17a6017a C17 Ceramide (d18:1/17:0) [M+H-H2O]+ 534.5244222 260.366666667 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_4ea7542ba4101e37a2fe96ab0370eb8e C17 Ceramide (d18:1/17:0) [M+Cl]- 586.497118 261.233333333 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_ed3d9c8e0180cfbb7f0509c930359220 C17 Glucosyl(beta) Ceramide (d18:1/17:0) [M+Na]+ 736.5697578 283.4 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_d03021ac70afe95272666f2f1f82c68b C17 Glucosyl(beta) Ceramide (d18:1/17:0) [M+H]+ 714.58781387 285.6 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
1 2 ... 1852 1853 1854 1855 1856 1857 1858 ... 2315 2316