Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_efc4fc1f2091ec4960600f466a3114c9 4ME 16:0 PC [M+H]+ 846.69459507 308.433333333 CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OC[C@H](COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C Lipids and lipid-like molecules 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_ede7f05bf1c05c104a6b661f3c7bc9b1 4ME 16:0 PC [M+HCOO]- 890.6855218 310.5 CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OC[C@H](COP(=O)([O-])OCC[N+](C)(C)C)OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C Lipids and lipid-like molecules -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_4d4d01e42286757c510a545dba5be06d 4ME 16:0 PE [M+Na]+ 826.6295914 301.2 CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OC[C@H](COP(=O)([O-])OCC[NH3+])OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C Lipids and lipid-like molecules 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_bbe442cd1fa9c97836462c5fefa7ff7b 4ME 16:0 PE [M+H]+ 804.64764747 296.9 CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OC[C@H](COP(=O)([O-])OCC[NH3+])OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C Lipids and lipid-like molecules 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_5c63ef688d317a89c392a9369540fd15 4ME 16:0 PE [M-H]- 802.633095 288.166666667 CC(C)CCCC(C)CCCC(C)CCCC(C)CC(=O)OC[C@H](COP(=O)([O-])OCC[NH3+])OC(=O)CC(C)CCCC(C)CCCC(C)CCCC(C)C Lipids and lipid-like molecules -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_21c9837f3713f107f11c60c692ff8b91 4ME 16:0 PG [M+Na]+ 857.624172 304.0 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_be538127bcbb4626a5af8781935b4379 4ME 16:0 PG [M+H]+ 835.64222807 307.73 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_4a37d1bcb11b573b3a84c0a2f8c38b03 4ME 16:0 PG [M+NH4]+ 852.6687754 307.77 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_b271bd1dd16aa20f1a83f85ac3f7d69a 4ME 16:0 PG [M-H]- 833.6276756 295.033333333 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_c47f9f242136719c1d15ee92e977659a 4ME 16:0 PS [M+Na]+ 870.6194214 304.033333333 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
1 2 ... 1826 1827 1828 1829 1830 1831 1832 ... 2315 2316