Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_e3bc82dfb549167e4e9983514eaefe4d 18:0 Lyso PS [M-H]- 524.2993768 228.666666667 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_78637c36fa2a93446e97473af3d0acac 18:0 PA [M+Na]+ 727.5247976 279.6 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_1a6991bc9eef59b8566907001b54c142 18:0 PA [M+NH4]+ 722.569401 284.3 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_88dc094895c6cde53bcd36415cad51ea 18:0 PA [M-H]- 703.5283012 270.033333333 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_fd3b4887b73368f17cf98332ec6407ae 18:0 PC [M+Na]+ 812.6139422 300.866666667 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_a34a6f70ae8fc7e359dea99c993b8b2e 18:0 PC [M+H]+ 790.6319978 297.98 None None 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_72b44536851f083d549ecc8ad5d7a0ed 18:0 PC [M+Cl]- 824.5941234 300.62 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_34bde65b8b2e112224b1b01e558a0556 18:0 PC [M+HCOO]- 834.622925 301.36 None None -1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_56a843b91e9643c3de78184d32c14345 18:0 PE [M+Na]+ 770.5669946 291.266666667 CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-])OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC Lipids and lipid-like molecules 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
CCSBASE_e31eb7cf4c0ec03bdf11d1f670a66a27 18:0 PE [M+H]+ 748.58505067 286.5 CCCCCCCCCCCCCCCCCC(=O)OC[C@H](COP(=O)([O-])OCC[NH3+])OC(=O)CCCCCCCCCCCCCCCCC Lipids and lipid-like molecules 1 27 TIMS calibrated with ESI Low Concentration Tuning Mix (Agilent)
1 2 ... 1767 1768 1769 1770 1771 1772 1773 ... 2315 2316