Name:
Adduct:
Polarity:
Z:
m/z:
±:
CCS: Å
±: %
SMI:
Type:

Make a CSV file containing information about your queries.
Then upload the CSV file below and click on "Make Queries" to view the results online
and click "Download Results" to download the entire results in one excel file.
An example of the CSV file can be found below

Download Example CSV


**Make sure the header column names are as follows**

...



Upload a CSV file

1
May, J. C. et al. Conformational Ordering of Biomolecules in the Gas Phase: Nitrogen Collision Cross Sections Measured on a Prototype High Resolution Drift Tube Ion Mobility-Mass Spectrometer. Anal. Chem. 86, 2107–2116 (2014).


2
Paglia, G. et al. Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications. Anal. Chem. 86, 3985–3993 (2014).


3
Groessl, M., Graf, S. & Knochenmuss, R. High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140, 6904–6911 (2015).


4
Zhou, Z., Shen, X., Tu, J. & Zhu, Z.-J. Large-Scale Prediction of Collision Cross-Section Values for Metabolites in Ion Mobility-Mass Spectrometry. Anal. Chem. 88, 11084–11091 (2016).


5
Hines, K. M., Herron, J. & Xu, L. Assessment of altered lipid homeostasis by HILIC-ion mobility-mass spectrometry-based lipidomics. The Journal of Lipid Research 58, 809–819 (2017).


6
Bijlsma, L. et al. Prediction of Collision Cross-Section Values for Small Molecules: Application to Pesticide Residue Analysis. Anal. Chem. 89, 6583–6589 (2017).


7
Hines, K. M., Ross, D. H., Davidson, K. L., Bush, M. F. & Xu, L. Large-Scale Structural Characterization of Drug and Drug-Like Compounds by High-Throughput Ion Mobility-Mass Spectrometry. Anal. Chem. 89, 9023–9030 (2017).


8
Stow, S. M. et al. An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Anal. Chem. 89, 9048–9055 (2017).


9
Zhou, Z., Tu, J., Xiong, X., Shen, X. & Zhu, Z.-J. LipidCCS: Prediction of Collision Cross-Section Values for Lipids with High Precision To Support Ion Mobility–Mass Spectrometry-Based Lipidomics. Anal. Chem. 89, 9559–9566 (2017).


10
Zheng, X. et al. A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem. Sci. 8, 7724–7736 (2017).


11
Hines, K. M. et al. Characterization of the Mechanisms of Daptomycin Resistance among Gram-Positive Bacterial Pathogens by Multidimensional Lipidomics. mSphere 2, 99–16 (2017).


12
Lian, R. et al. Ion mobility derived collision cross section as an additional measure to support the rapid analysis of abused drugs and toxic compounds using electrospray ion mobility time-of-flight mass spectrometry. Anal. Methods 10, 749–756 (2018).


13
Mollerup, C. B., Mardal, M., Dalsgaard, P. W., Linnet, K. & Barron, L. P. Prediction of collision cross section and retention time for broad scope screening in gradient reversed-phase liquid chromatography-ion mobility-high resolution accurate mass spectrometry. Journal of Chromatography A 1542, 82–88 (2018).


14
Righetti, L. et al. Ion mobility-derived collision cross section database: Application to mycotoxin analysis. Analytica Chimica Acta 1014, 50–57 (2018).


15
Tejada-Casado, C. et al. Collision cross section (CCS) as a complementary parameter to characterize human and veterinary drugs. Analytica Chimica Acta 1043, 52–63 (2018).


16
Nichols, C. M. et al. Untargeted Molecular Discovery in Primary Metabolism: Collision Cross Section as a Molecular Descriptor in Ion Mobility-Mass Spectrometry. Anal. Chem. 90, 14484–14492 (2018).


17
Hines, K. M. & Xu, L. Lipidomic consequences of phospholipid synthesis defects in Escherichia coli revealed by HILIC-ion mobility-mass spectrometry. Chemistry and Physics of Lipids 219, 15–22 (2019).


18
Leaptrot, K. L., May, J. C., Dodds, J. N. & McLean, J. A. Ion mobility conformational lipid atlas for high confidence lipidomics. Nature Communications 1–9 (2019).


19
Blaženović, I. et al. Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time–Ion Mobility Mass Spectrometry. Anal. Chem. 90, 10758–10764 (2018).


20
Tsugawa, H. et al. MS-DIAL 4: accelerating lipidomics using an MS/MS, CCS, and retention time atlas. bioRxiv 37, 513 (2020).


21
Poland, J. C. et al. Collision Cross Section Conformational Analyses of Bile Acids via Ion Mobility–Mass Spectrometry. Journal of the American Society for Mass Spectrometry 31, 1625–1631 (2020).


22
Dodds, J. et al. Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry−Mass Spectrometry (IMS-MS). Anal. Chem. 92, 4427-4435 (2020).


23
Celma, A. et al. Improving Target and Suspect Screening High-Resolution Mass Spectrometry Workflows in Environmental Analysis by Ion Mobility Separation. Environ. Sci. Technol. 54, 15120-15131 (2020)


24
Belova, L. et al. Ion Mobility-High-Resolution Mass Spectrometry (IM-HRMS) for the Analysis of Contaminants of Emerging Concern (CECs): Database Compilation and Application to Urine Samples. Anal. Chem. XXX, XXXX-XXXX (2021)


25
Ross, D. H., et al. High-Throughput Measurement and Machine Learning-Based Prediction of Collision Cross Sections for Drugs and Drug Metabolites. J Am Soc Mass Spectr 33, 1061–1072 (2022).


26
EH Palm, J Engelhardt, S Tshepelevitsh, J Weiss, A Kruve (2024) J Am Soc Mass Spectrom DOI:10.1021/jasms.4c00035


27
Baker, E. S. et al. METLIN-CCS Lipid Database: An authentic standards resource for lipid classification and identification Nat. Metab. 6, 981-982 (2024).


28
HB Muller, G Scholl, J Far, E de Pauw, G Eppe (2023) Anal Chem 95(48): 17586-17594


29
Coming Soon...


ID Name Adduct Structure m/z CCS SMI Type Z Ref CCS Type CCS method
CCSBASE_dc706cf6cd70e7027e946b2c8883dd3a 4,2'-diOH-CB107 [M-H]- 354.8653928 168.091 C1=CC(=C(C(=C1C2=CC(=C(C(=C2Cl)Cl)O)Cl)O)Cl)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_f95d73fb0375afc4ad78f274b9edacc2 4,3'-diOH-CB107 [M-H]- 354.8653928 168.6433 C1=C(C=C(C(=C1O)Cl)Cl)C2=CC(=C(C(=C2Cl)Cl)O)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_eb8b0c074b88dc9bd2eda54be4d7e3b0 4,3'-diOH-CB90 [M-H]- 354.8653928 167.999 C1=CC(=C(C(=C1C2=CC(=C(C(=C2Cl)Cl)O)Cl)Cl)O)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_24f075428e5ec519be46c536923ef172 4,4'-diOH-CB111 [M-H]- 354.8653928 169.1957 C1=C(C=C(C(=C1Cl)O)Cl)C2=CC(=C(C(=C2Cl)Cl)O)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_b52bc5971d75a74c4fb22f03b4e8b2a6 4,4'-diOH-CB80 [M-H]- 320.90436515199997 163.8565 C1=C(C=C(C(=C1Cl)O)Cl)C2=CC(=C(C(=C2)Cl)O)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_a257c140b167f60a4a29692774e9784e 4,4'-diOH-CB83 [M-H]- 320.90436515199997 167.1705 C1=CC(=C(C(=C1C2=CC(=C(C(=C2)Cl)O)Cl)Cl)Cl)O Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_fba703f5589cb5a74fc84fe4b7df7793 4'-OH-CB120 [M-H]- 338.87047818 166.6181 C1=C(C=C(C(=C1Cl)O)Cl)C2=CC(=C(C=C2Cl)Cl)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_ed13f51d6e7bb7a06efd6e942cd32ec0 4'-OH-CB127 [M-H]- 338.87047818 165.7896 C1=C(C=C(C(=C1Cl)O)Cl)C2=CC(=C(C(=C2)Cl)Cl)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_39e27b75be32bbfa8e3c9e8367778962 4'-OH-CB159 [M-H]- 372.831505828 170.3924 C1=C(C=C(C(=C1Cl)O)Cl)C2=CC(=C(C(=C2Cl)Cl)Cl)Cl Benzenoids -1 26 TW calibrated with in-house mix
CCSBASE_7e8c0d7df01b1953d279c481c5350b7c 4'-OH-CB30 [M-H]- 270.94842288399997 155.8477 C1=CC(=CC=C1C2=C(C=C(C=C2Cl)Cl)Cl)O Benzenoids -1 26 TW calibrated with in-house mix
1 2 ... 1698 1699 1700 1701 1702 1703 1704 ... 2315 2316